期刊文献+

正则q-树根图的双概率可靠性探究 被引量:6

On Reliability of Two Probability in Regular Q-Tree Rooted Graph
下载PDF
导出
摘要 首先研究得到了双变量色多项式的一般性的减边公式.接着对根图顶点进行了期望值研究,得出其减边公式,并由此得到一些特殊根图的期望值计算公式.最后讨论了正则q-树根图和正则q-树整子根图的期望值计算公式. We have achieved a general Reduction Edge Formula.Then we have proposed a new vertex expect of rooted graphs,that is,we consider the expected number of vertices in the operational component of rooted graph which contains the root.And we get its Reduction edge formula.With this formula,we have obtained some specific graphsexpected value calculate formulas.Later,we have studied regular rooted qtree and integral subgraph of regular rooted q-tree.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第12期24-27,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(60872060) 上海市教委科学基金资助项目(12ZZ193) 上海市自然科学基金资助项目(12ZR1421000)
关键词 色多项式 根图 减边公式 正则q-树根图 正则q-树整子根图 chromatic polynomials rooted graph Reduction Edge Formula regular rooted q-tree integral subgraph of regular rooted q-tree
  • 相关文献

参考文献5

二级参考文献23

共引文献22

同被引文献30

  • 1舒海翅,王新洲,花向红,田玉刚.模糊ISODATA中分类数C的确定[J].模糊系统与数学,2004,18(z1):318-322. 被引量:2
  • 2沈小玲,侯耀平.最大度和次大度相等的双星树由它的Laplacian谱确定[J].湖南师范大学自然科学学报,2007,30(3):22-25. 被引量:2
  • 3TUT'FE W T. Graph theory[ M ]. Cambridge: Cambridge University Press, 2001. 被引量:1
  • 4DOHMEN K, PONITZ A, TIrI:MANN P. A new two-variable generalization of the chromatic polynomial[ J ]. Discrete Math The- or Comput Sci, 2003,6(2) :69-89. 被引量:1
  • 5WELSH D. The Tutte polynomial [ J ]. Random Structures Algorithms, 1999,15 ( 3 -4 ) : 210 -228. 被引量:1
  • 6AVERBOUCH I, MAKOWSKY J. The complexity of multivariate matching polynomials, January 2007. Preprint. 被引量:1
  • 7AIVALIOTIS M,GORDON G,GRAVEMAN W. When bad things happen to good trees[J]. Graph Theory, 2001,37:79-99. 被引量:1
  • 8BAILY A,GORDON G,PATTON M,et al. Expected value expansions in rooted graphs [J]. Discrete Applied Mathematics, 2003,128 : 555-571. 被引量:1
  • 9TANG X,TAN M. Estimation of simple constrained parameters with EM method[J]. J Hunan Institute of Engineering,2010, 20(1) :61-64. 被引量:1
  • 10TANG X. New expected value expansions of rooted graphs[J]. Acta Mathematicae Applicatae Sinica:English Series,2015,31 (1) :1-8. 被引量:1

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部