期刊文献+

顶点劈分与图的上可嵌入性(英文)

Vertex Splitting and Upper Embeddable Graphs
原文传递
导出
摘要 一个图G的弱子式G是通过对G进行边收缩得到的.一个弱子式封闭的上可嵌入图族是一个上可嵌入图的集合,并且该集合中任何图的弱子式仍在这个集合中.目前关于判断图的上可嵌入性的充要条件很少.本文通过研究顶点劈分与图的上可嵌入性的关系得出一个判断图的上可嵌入性的充要条件;给出了一个从环束出发构造弱子式封闭上可嵌入图族的方法;推广了[J.Graph Theory,1981,5(2):205-207]的一个结论.并且,用本文所得结论判断图的上可嵌入性时其算法复杂度会得到很大降低. The weak minor G of a graph G is the graph obtained from G by a sequence of edge-contraction operations on G.A weak-minor-closed family of upper embeddable graphs is a set g of upper embeddable graphs that for each graph G in G,every weak minor of G is also in g.Up to now,there are few results providing the necessary and sufficient conditions for characterizing upper embeddability of graphs.In this paper,we study the relation between the vertex splitting operation and the upper embeddability of graphs;provide not only a necessary and sufficient condition for characterizing upper embeddability of graphs,but also a way to construct weak-minor-closed family of upper embeddable graphs from the bouquet of circles;and extend a result in[J.Graph Theory,1981,5(2):205-207].In addition,the algorithm complex of determining the upper embeddability of a graph can be reduced much by the results obtained in this paper.
出处 《数学进展》 CSCD 北大核心 2014年第5期711-724,共14页 Advances in Mathematics(China)
基金 partially supported by the China Postdoctoral Science Foundation funded project(No.20110491248(G.Dong)) the New Century Excellent Talents in University(No.NCET-07-0276(Y.Huang)) NSFC(No.11171114(H.Ren),No.10871021(Y.Liu))
关键词 最大亏格 弱图子式 柔性弱子式 柔性点 柔性边 maximum genus weak minor flexible-weak-minor flexible-vertex flexibleedge
  • 相关文献

参考文献6

二级参考文献13

  • 1REN Han,BAI Yun.Exponentially many maximum genus embeddings and genus embeddings for complete graphs[J].Science China Mathematics,2008,51(11):2013-2019. 被引量:6
  • 2Hung-Lin Fu,Martin ?koviera,Ming-Chun Tsai.The maximum genus, matchings and the cycle space of a graph[J]. Czechoslovak Mathematical Journal . 1998 (2) 被引量:1
  • 3Rick Giles.Optimum matching forests I: Special weights[J]. Mathematical Programming . 1982 (1) 被引量:1
  • 4Bondy JA,Murty USR.Graph Theory with Applications. . 1976 被引量:1
  • 5Xuong NH.How to determine the maximum genus of a graph. Journal of Combinatorial Theory.Series B . 1979 被引量:1
  • 6Liu Yanei.The maximum orientable genus of a graph. Scientia Sinical, Special Issue on Math . 1979 被引量:1
  • 7B. Mohar,C. Thomassen.Graphs on Surfaces. . 2001 被引量:1
  • 8Fu H L,Skoviera M,Tsai M.The maximum genus,matchings and the cycle space of a graph. Csechoslovak Math J . 1998 被引量:1
  • 9Yuanqiu Huang.Maximum genus of a graph in terms of its embedding properties. Discrete Mathematics . 2003 被引量:1
  • 10S.Micali,V.V.Vazirani.1/2</sup>))algorithm for finding maximum matching in general graphs&amp;sid=Proc.21th IEEE Symp.Found.Comp.Sci.ACM&amp;aufirst=S.Micali');&#xA; ">an O(|V|·|E|<sup>1/2</sup>))algorithm for finding maximum matching in general graphs. Proc.21th IEEE Symp.Found.Comp.Sci.ACM . 1980 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部