期刊文献+

Upper embeddability,edge independence number and girth 被引量:2

Upper embeddability,edge independence number and girth
原文传递
导出
摘要 Combined with the edge-connectivity, this paper investigates the relationship between the edge independence number and upper embeddability. And we obtain the following result:Let G be a k-edge-connected graph with girth g. If $$ \alpha '(G) \leqslant ((k - 2)^2 + 2)\left\lfloor {\frac{g} {2}} \right\rfloor + \frac{{1 - ( - 1)^g }} {2}((k - 1)(k - 2) + 1) - 1, $$ where k = 1, 2, 3, and α′(G) denotes the edge independence number of G, then G is upper embeddable and the upper bound is best possible. And it has generalized the relative results. Combined with the edge-connectivity, this paper investigates the relationship between the edge independence number and upper embeddability. And we obtain the following result: Let G be a k-edge-connected graph with girth g. If α '(G)≤((k-1)2+2) [g/2]+(1-(-1)n)/2((k-1)(k-2)+1)-1,where k =1, 2, 3, and α (G) denotes the edge independence number of G, then G is upper embeddable and the upper bound is best possible. And it has generalized the relative results.
出处 《Science China Mathematics》 SCIE 2009年第9期1939-1946,共8页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10771062) New Century Excellent Talents in University (Grant No.NCET-07-0276)
关键词 GRAPH upper embeddability edge independence number GIRTH 05C10 graph upper embeddability edge independence number girth
  • 相关文献

参考文献3

二级参考文献34

  • 1Liu Y P.Map color theorem and graph embeddings. Math Practice Theory . 1981–1982 被引量:1
  • 2Lawrencenko S.The irreducible triangulations of the torus. Ukrain Geom SB . 1987 被引量:1
  • 3Korzhik V,Voss H-J.On the number nonisomorphic orientable regular embeddings of complete graphs. J Combin Theorey Ser B . 2001 被引量:1
  • 4Bondy J A,Murty U S R.Graph Theory with Application. . 1979 被引量:1
  • 5Nebesky L.A New Characterization of the Maximum Genus of a Graph,. J.Czech.Math . 1981 被引量:1
  • 6Huang Y Q.On the maximum genus of graphs. . 1996 被引量:1
  • 7Xuong N H.How to Determine the Maximum Genus of a Graph. Journal of Combinatorial Theory . 1979 被引量:1
  • 8Korzhik V,Voss H-J.Exponential families of nonisomorphic nontriangular orientble genus embeddings of complete graphs. J Combin Theory Set B . 2002 被引量:1
  • 9WHITNEY H.2-isomorphic graphs. American Journal of Mathematics . 1933 被引量:1
  • 10Ringel G.Map Color Theorem. . 1974 被引量:1

共引文献10

同被引文献5

  • 1REN Han,ZHAO HongTao,LI HaoLing.Fundamental cycles and graph embeddings[J].Science China Mathematics,2009,52(9):1920-1926. 被引量:1
  • 2刘彦佩.THE MAXIMUM ORIENTABLE GENUS OF A GRAPH[J].Science in China,Ser.A.1979(S1) 被引量:1
  • 3Yuanqiu Huang,Yanpei Liu.Face Size and the Maximum Genus of a Graph 1. Simple Graphs[J].Journal of Combinatorial Theory Series B.2000(2) 被引量:1
  • 4Deming Li.Maximum Genus, Girth and Connectivity[J].European Journal of Combinatorics.2000(5) 被引量:1
  • 5Jianer Chen,Saroja P. Kanchi,Jonathan L. Gross.A tight lower bound on the maximum genus of a simplicial graph[J].Discrete Mathematics.1996(1) 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部