摘要
以铸态7085铝合金为实验对象,通过在Gleeble-1500热模拟实验机上实施双道次的热压缩模拟实验,研究了7085铝合金在应变速率0.005~5 s-1、温度300~400℃、道次时间间隔30~120 s下的道次间隔时间内的亚动态再结晶规律。结果表明:7085铝合金道次间隔内的亚动态再结晶分数受温度影响很大,当温度升高时,亚动态再结晶分数迅速增加;受应变速率的影响也很明显,随着应变速率的增大,7085铝合金道次间隔内的亚动态再结晶分数增大。另外,当道次间隔时间增加时,亚动态再结晶分数的增大更加显著。依托实验所得到的数据,建立了7085铝合金道次间隔时间内的亚动态再结晶力学模型,且将所建立的亚动态再结晶力学模型的预测结果与实验值对比,二者吻合度较好,这验证了模型的正确性。
7085 as-cast aluminum alloy was used as the experimental object,and the sub-dynamic recrystallization rules of 7085 aluminum alloy in the time interval were investigated by carrying out double-pass hot compression experiment on Gleeble-1500 under the process parameters that the rate of strain is 0.005-5 s-1 and the deformation temperature is 300-450℃and the time interval is 30-120 s.The results show that the sub-dynamic recrystallization fraction during the pass interval of the alloy is greatly affected by the deformation temperature.When the temperature rises,the sub-dynamic recrystallization fraction increases rapidly;the influence of the strain rate is also obvious.The sub-dynamic recrystallization fraction in the7085 aluminum alloy pass interval increases along with the increase of the strain rate.And the increase of the sub-dynamic recrystallization fraction is more significant when the pass interval increases.Based on the test results,the metadynamic recrystallization kinetic model of 7085 as-cast aluminum alloy at inter-track intervals is established.Compared with the experimental values,a good agreement between the experimental and predicted results is obtained and the correctness of the model is verified.
作者
李斌
湛利华
刘健
刘观日
胡正根
LI Bin;ZHAN Lihua;LIU Jian;LIU Guanri;HU Zhenggen(Beijing Aerospace Systems Engineering Institute,Beijing100076,China;State Key Laboratory of High PerformanceComplex Manufacturing Central South University,Changsha410083,China;School of Electromechanical EngineeringCentral South University,Changsha410083,China)
出处
《热加工工艺》
北大核心
2019年第18期45-48,54,共5页
Hot Working Technology
基金
国家重点研发计划项目(2017YFB0306300)
中南大学“创新驱动计划”项目(2015CX002)
国家重点基础研究计划项目(2014CB046602)
国家科技重大专项(2017ZX04005001-007)
国防基础科研计划重大项目(JCKY2014203A001)