期刊文献+

基于切比雪夫扩频序列的测量矩阵构造算法 被引量:7

Measurement Matrix Construction Algorithm Based on Chebyshev Spreading Sequence
下载PDF
导出
摘要 针对混沌系统以间隔采样序列构造压缩感知测量矩阵而造成的计算和存储资源的浪费,提出了一种基于切比雪夫-贝努利(Chebyshev-Bernoulli)序列构造测量矩阵的算法。通过符号函数将切比雪夫混沌系统产生的混沌序列映射为其扩频序列,并证明其扩频序列服从贝努利(Bemoulli)分布特性,进一步由其扩频序列构造压缩感知测量矩阵。实验仿真表明,该测量矩阵与随机矩阵、混沌矩阵相比具有同样的重构性能,对于红外图像的重构,提出的方法具有更好的重构性能。 As chaotic sequence used for constructing measurement matrix in compressed sensing by sampling intervals sequence caused computing and storage resources wasting,a algorithm of structuring measurement matrix was put forward based on Chebyshev-Bernoulli sequence,in which Chebyshev chaotic system was used to generate the chaotic sequence,then be mapped spread spectrum sequence by the symbol function,at last,the spread spectrum sequence was proved obeying the Bernoulli distribution and then a measurement matrix was constructed by it. Simulation results showed that the measurement matrix has equal performance with random matrix and chaotic matrix. Chebyshev-Bernoulli measurement matrix showed more excellent performance in reconstruction for infrared image.
出处 《四川大学学报(工程科学版)》 CSCD 北大核心 2015年第S2期155-160,共6页 Journal of Sichuan University (Engineering Science Edition)
关键词 压缩感知 测量矩阵 混沌系统 贝努利分布 扩频序列 compressed sensing measurement matrix chaotic system Bernoulli distribution spread spectrum sequence
  • 相关文献

参考文献10

  • 1Donoho D L.Compressed sensingIEEE Transactions on In- formation Theory,2006. 被引量:12
  • 2Yu, Lei,Barbot, Jean Pierre,Zheng, Gang,Sun, Hong.Compressive sensing with chaotic sequence. IEEE Signal Processing Letters . 2010 被引量:1
  • 3Gan H P,Li J,Li Z,et al.Bernoulli shift chaotic sequence for compressed sensing. Journal of Computational Information Systems . 2014 被引量:1
  • 4Candès E.Compressive sampling. Proceedings of International Congress ofMathematicians . 2006 被引量:2
  • 5J. A. Tropp.Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory . 2004 被引量:1
  • 6J. A. Tropp,A. C. Gilbert.Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory . 2007 被引量:6
  • 7Candès, Emmanuel J.,Romberg, Justin,Tao, Terence.Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory . 2006 被引量:8
  • 8Figueiredo, M.A.T.,Nowak, R.D.,Wright, S.J.Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse ProblemsSelected Topics in Signal Processing IEEE Journal of,2007. 被引量:4
  • 9Frunzete M,Le i Y,Barbot J.Compressive sensing matrix designed by tent map,for secure data transmission. Signal Processing Algorithms,Architectures,Arrangements,and Applications Conference Proceedings . 2011 被引量:1
  • 10Gan Hongping,Li Zhi,Li Jian,et al.Compressive sensing using chaotic sequence based on Chebyshev map. Nonlinear Dynamics . 2014 被引量:1

共引文献20

同被引文献32

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部