期刊文献+

基于亚高斯随机投影的图像重建方法 被引量:33

A Method of Image Reconstruction Based on Sub-Gaussian Random Projection
下载PDF
导出
摘要 将亚高斯随机投影引入可压缩传感CS(compressed sensing)理论,给出了两种新类型的CS测量矩阵:稀疏投影矩阵和非常稀疏投影矩阵.利用亚高斯分布尾部的有界性,证明了这两种矩阵满足CS测量矩阵的必要条件.同时,进一步说明由于这两种矩阵构成元素的稀疏性可以简化图像重建过程中的投影计算,从而提高重建速度.实验结果表明新的测量矩阵均有较好的测量效果,在满足一定测量数目要求的条件下可以精确重建.最后给出了这两种矩阵与一般采用的高斯测量矩阵的重建结果比较和分析. In this paper, sub-Gaussian random projection is introduced into compressed sensing (CS) theory and two new kinds of CS measurement matrix, sparse projection matrix and very sparse projection matrix are presented. By the tail bounds for sub-Gaussian random projections, the proof of how these new matrices satisfy the necessary condition for CS measurement matrix is provided. Then, it is expatiated that owing to their sparseness, new kinds of matrices greatly simplify the projection operation during image reconstruction, which simultaneously greatly improves the speed of reconstruction. Further, it can be easily proved that Gaussian matrix and Bernoulli matrix are special matrices obeying sub-Gaussian random distribution, which indicates that new measurement matrices extend the current results on CS measurement matrix. Both the results of simulated and real experiments show that with a certain number of measurements, new matrices have good measurement effect and can acquire exact reconstruction. Finally, the comparison and analysis of reconstruction results respectively adopting new matrices and Gaussian measurement matrix is conducted. Compared with Gaussian measurement matrix, new matrices have lesser average over-sampling factor, which indicates lower complexity of reconstruction.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第8期1402-1407,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60603083,60473102) 高等学校博士学科点专项科研基金项目(20070357003)~~
关键词 亚高斯 随机投影 可压缩 稀疏性 测量矩阵 sub-Gaussian random projection compressed sparseness measurement matrix
  • 相关文献

参考文献13

  • 1Donoho D. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 2Candes E J, Romberg J, Tao T. Signal recovery incomplete and inaccurate measurements from [J]. Communications on Pure & Applied Applied Mathematics, 2005, 59(8): 1207-1223. 被引量:1
  • 3Donoho D, Huo X, Uncertainty principles and ideal atomic decompositions [J]. IEEE Trans on Inforation Theory, 2001, 47(7):2845-2862 被引量:1
  • 4Donoho D, Elad M. Maximal sparsity representation via l1 minimization [J]. Proceedings of the National Academy of Sciences, 2003, 100(5) : 2197-2202. 被引量:1
  • 5Donoho D L, Stark P B. Uncertainty principles and signal recovery [J]. SIAM Journal on Applied Mathematics, 1989, 49(3) : 906-931. 被引量:1
  • 6Candes E, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [J]. Foundations of Computer Mathematics, 2006, 6(2): 227- 254. 被引量:1
  • 7Candes E, Tao T. Near optimal signal recovery from random projections and universal encoding strategies [J]. IEEE Trans on Information Theory, 2006, 52(12) : 5406-5425. 被引量:1
  • 8Candes E, Tao T. Decoding by linear programming [J]. IEEE Trans on Information Theory, 2005, 51(12): 4203- 4215. 被引量:1
  • 9Dasgupta S, Gupta A. An elementary proof of the Johnson-Lindenstrauss Lemma, 99-006 [R]. Berkeley: University of California, Berkeley, 1999. 被引量:1
  • 10Baraniuk R, Davenport M, DeVore R, et al. A simple proof of the restricted isometry property for random matrices [OL]. [2007-02-01]. http://www, lsp. ece. rice. edu/cs/. 被引量:1

二级参考文献27

  • 1Bergeau F,Mallat S.Matching pursuit of images[A].Proceedings of IEEE-SP[C].USA:Piladelphia,1994.330-333. 被引量:1
  • 2Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans.On Signal Processing,1993,41(12):3397-3415. 被引量:1
  • 3Neff R,Zakhor A.Very low bit-rate video coding based on matching pursuit[J].IEEE Trans.Circuits and Systems for Video Tech.,1997,7(1):158-171. 被引量:1
  • 4Phillips P.Matching pursuit filter design[A].Proceedings of the 12th IAPR international conference on SP (Vol.3)[C].Jerusalem Israel,1994.57-61. 被引量:1
  • 5Vandergheynst P,Frossard P.Efficient image representation by anistropic refinement in matching pursuit[A].Proceedings of IEEE on ICASSP(Vol.3)[C].USA:Salt Lake City,2001.1757-1760. 被引量:1
  • 6Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41(12) : 3 397-3 415. 被引量:1
  • 7Arthur P L, Philipos C L. Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition[A]. Proc of IEEE ICASSP[C]. Hong Kong: IEEE Press: 2003,I(4). 820-828. 被引量:1
  • 8M.A. Guttman, et al. Analysis of cardiac function from MR images. IEEE Computer Graphics and Applications, 1997, 17(1): 55-63. 被引量:1
  • 9B. Higgins. Overview of MR of the heart-1986. Amer. J.Roentgenol, 1986, 146(5): 907- 918. 被引量:1
  • 10E.A. Zerhouni, et al. Human heart: Tagging with MR imaging-A method for noninvasive assessment of myocardial motion. Radiology, 1988, 169(1): 59-63. 被引量:1

共引文献41

同被引文献395

引证文献33

二级引证文献550

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部