期刊文献+

大规模集成电路预烧作业中分批排序问题的数学模型 被引量:7

Formulating the Batch Scheduling in Semiconductor Burn-in Operations as a Mathematical Programming
下载PDF
导出
摘要 分批排序(BatchScheduling)是在半导体生产过程的最后阶段提炼出来的一类重要的排序问题。单机分批排序问题就是n个工件在一台机器上加工,要将工件分批,每批最多可以同时加工B个工件,每批的加工时间等于此批工件中的最大的加工时间。Skutella[8]1998年把平行机排序的P||∑ωjCj和R||∑ωjCj表述成二次的0-1整数规划,得到一些令人满意的结果;国内罗守成等[9]、张倩[10]给出了单机排序问题1||∑ωjCj的数学规划表示,对于用数学规划来研究排序问题是一个很有意义的进展。本文首先介绍总完工时间和最小的带权单机分批排序问题1|B|∑ωjCj,然后将1|B|∑ωjCj表示成数学规划的形式,并且用数学规划中的对偶理论证明了SPT序是其特殊情况1|B=1|∑Cj的最优解。 We study the problem of minimizing total weighted completion time on single batch processing machine.It is a problem of batch scheduling which arises in the burnin stage of semiconductor manufacturing.Burnin ovens are modeled as batchprocessing machines which can handle up to B jobs simultaneously.The processing time of a batch is equal to the longest processing time among the jobs in the batch.In 1998,Skutella formulated the parallel machine scheduling problem P||∑ωjCj and R||∑ωjCj as 01 mixed integer programming.Luo and Zhang formuated the single machine scheduling problem 1||∑ωjCj as mathematical programming.We first formulate the problem of minimizing total weighted completion time on single batch processing machine 1|B|∑ωjCj and get some conclusions.
出处 《中国管理科学》 CSSCI 2003年第4期32-36,共5页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(10271065)
关键词 排序 分批排序 数学规划 总完工时间 scheduling batch scheduling mathematical programming total competion time
  • 相关文献

参考文献3

二级参考文献23

  • 1[1]Goemans,M.X.and D.P.Williamson,.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming.Journal of Association for Computing Machinery,42(1995),1115-1145. 被引量:1
  • 2[2]Goemans,M.X.,Semidefinite programming in combinatorial optimization,Mathematical Programming,79(1997),143-161. 被引量:1
  • 3[3]Hall,L.A.,A.S.Schulz,D.B.Shmoys and J.Wein,Scheduling to minimize average completion time:Off-line and on-line approximation algorithms,Mathematics of Operations Research,22(1997),513-544. 被引量:1
  • 4[4]Phillips,C.,C.Stein and J.Wein,Minimizing average completion time in the presence of release dates,Mathematical Programming,82(1998),199-223. 被引量:1
  • 5[5]Phillips,C.A.,A.S.Schulz,D.B.Shmoys,C.Stein and J.Wein,Improved bounds on relaxations of a parallel machine scheduling problem,Journal of Combinatorial Optimization,1(1998),413-426. 被引量:1
  • 6[6]Skutella,Martin,Semidefinite relaxations for parallel machine scheduling,Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science,November,1998,472-481. 被引量:1
  • 7DYER M E, WOLSEY L A. Formulatingthe single machine sequencing problem with release dates as a mixed integer program[J].Discrete Applied Mathematics, 1990, 26: 252-270. 被引量:1
  • 8GOEMANS M X, WILLIAMSON D P. Improved approximation algorithms for maximum cut andsatisfiability problems using semidefinite programming[J]. Journal of Association forComputing Machinery, 1995, 42:1115-1145. 被引量:1
  • 9GOEMANS M X, WEIN J M, WILLIAMSON D P. A 1.47-approximation algorithm for apreemptive singlemachine scheduling problem[J]. Operations Research Letters, 2000, 26:149-154. 被引量:1
  • 10HALL L A, SCHULZ A S, SHMOYS D B, WEIN J. Scheduling to minimize average completiontime: Offline and on-line approximation algorithms[J]. Mathematics of Operation Research,1997, 22(3): 513-544. 被引量:1

共引文献20

同被引文献113

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部