期刊文献+

QUANTUM PHENOMENON OF THE ENERGY DENSITY OF A HARMONIC MAP TO A SPHERE 被引量:3

QUANTUM PHENOMENON OF THE ENERGY DENSITY OF A HARMONIC MAP TO A SPHERE
下载PDF
导出
摘要 This paper proves that if the energy density of a harmonic map to a unit sphere varies between two successive half eigenvalues, then it must be one of them. Applying this result to the Gaussian maps of some submanifolds, the quantum phenomena of the square length of the second fundamental forms of these submanifolds is obtained. Some related topics are discussed in this note. This paper proves that if the energy density of a harmonic map to a unit sphere varies between two successive half eigenvalues, then it must be one of them. Applying this result to the Gaussian maps of some submanifolds, the quantum phenomena of the square length of the second fundamental forms of these submanifolds is obtained. Some related topics are discussed in this note.
作者 周振荣
出处 《Acta Mathematica Scientia》 SCIE CSCD 2003年第1期41-45,共5页 数学物理学报(B辑英文版)
基金 Research supported by the NNSF of China (10071021)
关键词 Energy density EIGENVALUE the second fundamental form Energy density, eigenvalue, the second fundamental form
  • 相关文献

参考文献9

  • 1Chen B Y. A report on submanifolds of finite type. Soochow J Math, 1996, 22(2): 117-337 被引量:1
  • 2Chen B Y, Morvan J M, Nore T. Energy,tension and finte type maps. Kodai Math J, 1986, 9:406-418 被引量:1
  • 3Chern S S, Goldberg S I. On the volume decreasing property of a class of real harmonic mappings. Amer J Math, 1975, 97(1): 133-147 被引量:1
  • 4Chern S S, doCarmo M, Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length. Funct Anal Rel, Fields, 1970. 59-75 被引量:1
  • 5Eells J, Lemaire L. Selected topics in harmonic maps. Expository Lectures from the CBMS Regional conference held at Tulance Univ, Dec. 1980. 15-19 被引量:1
  • 6Eells J, Sampson J. Harmonic mappings of Riemannian manifolds. Amer J Math, 1964, 85:109-160 被引量:1
  • 7Ros A. Eigenvalue inequalities for minimal submanifolds and P-manifolds. Math Z, 1984,187:393-404 被引量:1
  • 8Ruh E A, Vilms J. The tension field of the Gauss map. TYan Amer Math Soc, 1970,149:569-573 被引量:1
  • 9Takahashi T. Minimal immersions of Riemannian manifolds. J Math Soc Japan, 1966,18(4): 380-385 被引量:1

同被引文献1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部