期刊文献+

靶流形为球面子流形的调和映射的量子化现象(英文)

QUANTUM PHENOMENA OF HARMONIC MAPS TO SUBMANIFOLDS OF THE SPHERE
下载PDF
导出
摘要 本文研究了调和映射和极小子流形的量子化性质.通过运用谱分解方法,获得了靶流形为球面子流形的调和映射的量子化性质,然后将其应用到球面的极小子流形的高斯映射,得到了极小子流形的第二基本形式的量子化性子. In this paper,we study quantum properties of harmonic maps and minimal submanifolds.By spectral decomposition,we obtain quantum properties of harmonic maps into spheres,and then applying it to Gaussian maps of minimal submanifolds of spheres,we get quantum properties of the second fundamental form of the minimal submanifolds.
出处 《数学杂志》 CSCD 北大核心 2012年第3期423-430,共8页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(11171259)
关键词 调和映射 特征值 第二基本形式 harmonic map eigenvalue the second fundamental form
  • 相关文献

参考文献2

二级参考文献10

  • 1Chen B Y. A report on submanifolds of finite type. Soochow J Math, 1996, 22(2): 117-337 被引量:1
  • 2Chen B Y, Morvan J M, Nore T. Energy,tension and finte type maps. Kodai Math J, 1986, 9:406-418 被引量:1
  • 3Chern S S, Goldberg S I. On the volume decreasing property of a class of real harmonic mappings. Amer J Math, 1975, 97(1): 133-147 被引量:1
  • 4Chern S S, doCarmo M, Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length. Funct Anal Rel, Fields, 1970. 59-75 被引量:1
  • 5Eells J, Lemaire L. Selected topics in harmonic maps. Expository Lectures from the CBMS Regional conference held at Tulance Univ, Dec. 1980. 15-19 被引量:1
  • 6Eells J, Sampson J. Harmonic mappings of Riemannian manifolds. Amer J Math, 1964, 85:109-160 被引量:1
  • 7Ros A. Eigenvalue inequalities for minimal submanifolds and P-manifolds. Math Z, 1984,187:393-404 被引量:1
  • 8Ruh E A, Vilms J. The tension field of the Gauss map. TYan Amer Math Soc, 1970,149:569-573 被引量:1
  • 9Takahashi T. Minimal immersions of Riemannian manifolds. J Math Soc Japan, 1966,18(4): 380-385 被引量:1
  • 10周振荣.Sasakian子流形的谱几何(英文)[J].数学杂志,2000,20(1):83-86. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部