期刊文献+

一类两点边值问题的正解

Positive Solutions for a Class of Two-point Boundary Value Problems
下载PDF
导出
摘要 讨论边值问题y″+λ(yα-yβ)=0,y(-1)=y(1)=0的正解,其中λ>0是正参数.其主要结论是:若β>α>1,则存在λ >0使得当λ>λ 时此边值问题恰好存在两个正解,当λ=λ 时存在惟一正解,当0<λ<λ 时不存在正解. The boundary value problems y″+λ(yα-yβ)=0 and y(-1)=y(1)=0 are considered,where λ>0 is a positive parameter.The main results are as follows:if β>α>1,then there exists λ*>0 such that this problem has exactly two positive solutions for λ>λ*,exactly one for λ=λ* and none for 0<λ<λ*.
作者 程建纲
出处 《烟台大学学报(自然科学与工程版)》 CAS 2003年第3期157-162,共6页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(10071066 10251002) 山东省自然科学基金资助项目(Y2002A10).
关键词 两点边值问题 正解 存在性 常微分方程 二阶导数 二次多项式 Lebesgue收敛定理 boundary value problem positive solution existence
  • 相关文献

参考文献7

  • 1Castro A,Gadam S,Sldvajl R. Evolution of positive solution curves in serniposhone problems with concave nonlinearities[ J ]. J Math Anal Appl,2000,245 (1) : 282-- 293. 被引量:1
  • 2Wang S, Long D. An exact multiplicity theorem involving concave-convex nonlinearities and its appliction to stationary solutions of a singular diffusion problem[J]. Nonlinear Anal,2001,44(4) :469--486. 被引量:1
  • 3Liu Z. Exact number of solutions of a class of two-point boundary value problems involving concave and convex nonlinearities[J]. Nonlinear Anal,2001,46(2) : 181 -- 197. 被引量:1
  • 4Cheng Y. On an open problem of Ambrosetti, Brezis and Cerami[J]. Differential and Integral Equations,2002,15(9) :1025--1044. 被引量:1
  • 5Liu Z, Zhang X. A class of two-point boundary value problems[ J ]. J Math Anal Appl, 2001,2S4 (2) :599-617. 被引量:1
  • 6Cheng JG. Exact number of positive solutions for a class of semipositone problems[J]. J Math Anal Appl,2003,280(2) : 197--208. 被引量:1
  • 7程建纲.一类两点边值问题的正解个数[J].数学年刊(A辑),2004,25(3):279-284. 被引量:8

二级参考文献6

  • 1Castro,A.,Gadam,S.&amp; Shivaji,R.,Evolution of positive solution curves in semipositone problems with concave nonlinearities [J],J.Math.Anal.Appl.,245:1(2000),282 293. 被引量:1
  • 2Wang,S.&amp; Long,D.,An exact multiplicity theorem involving concave-convex nonlinearities and its application to stationary solutions of a singular diffusion problem [J],Nonlinear Anal.,44:4(2001),469-486. 被引量:1
  • 3Liu,Z.,Exact number of solutions of a class of two-point boundary value problems involving concave and convex nonlinearities [J],Nonlinear Anal.,46:2(2001),181-197. 被引量:1
  • 4Liu,Z.&amp; Zhang,X.,A class of two-point boundary value problems [J],J.Math.Anal.Appl.,254:2(2001),599-617. 被引量:1
  • 5Davidson,F.A.&amp; Rynne,B.P.,Asymptotic oscillations of continua of positive solutions of a semilinear Sturm-Liouville problem [J],J.Math.Anal.Appl.,252:2(2000),617630. 被引量:1
  • 6Bonannao,G.,Existence of three solutions for a two point boundary value problem [J],Appl.Math.Letters,13:1(2000),53-57. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部