期刊文献+

非线性数学期望的收敛定理 被引量:3

Convergent Theorems for Nonlinear Mathematical Expectation
下载PDF
导出
摘要 从非线性数学期望的定义及其性质入手,通过与经典数学期望的比较,并利用经典的Lebesgue收敛定理和倒向随机微分方程解在L2意义下的连续性,提出并证明了被Eμ控制的非线性数学期望的Levi,Fatou及Lebesgue收敛定理,从而得到在适当条件下非线性数学期望在几乎处处意义下连续;同时指出这些结果对任意一个g-期望都成立. Levi, Fatou and Lebesgue convergent theorems on nonlinear mathematical expectation dominated by E~μ-expectation were put forward and proved based on the definition and properties of nonlinear mathematical expectation, the comparison with the classical mathematical expectation, the classical Lebesgue convergent theorem and the continuous property of the solution of a backward stochastic differential equation in L^2. Thus, the almost surely continuous property of nonlinear mathematical expectation under some proper conditions was obtained. At the same time, it was pointed out that these results are true for all g-expectations.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2005年第3期405-408,共4页 Journal of China University of Mining & Technology
关键词 数学期望 非线性 Lebesgue收敛定理 微分方程解 G-期望 连续性 经典 倒向 nonlinear mathematical expectation conditional ε-expectation convergent theorem backward stochastic differential equation g-expectation
  • 相关文献

参考文献6

  • 1Peng S G. BSDE and related g-expectations [A]. El Karoui N, Mazliak L. Backward Stochastic Differential Equations [C]. Harlow: Addison Welsey Longman ,1997.141-159. 被引量:1
  • 2Briand P, Coquet F, Hu Y, et al. A converse comparison theorem for BSDEs and related properties of gexpectation[J]. Electronic Communications in Probability, 2000,5:101-117. 被引量:1
  • 3Coquet F, Hu Y, Memin J, et al. Filtration consistent nonlinear expectations and related g-expectation[J]. Probability Theory & Related Fields, 2002,123:1-27. 被引量:1
  • 4Pardoux E, Peng S G. Adapted solution of a backward stochastic differential equation[J]. Systems Control Letters, 1990,14:55-61. 被引量:1
  • 5Peng S G. A general dynamic programming principle and hamilton-bellman equation[J]. Stochastics, 1992,38(2):119-134. 被引量:1
  • 6El Karoui N, Peng S G, Quence M C. Backward stochastic differential equation in finance[J]. Mathematical Finance, 1997,7(1):1-71. 被引量:1

同被引文献15

  • 1释恒璐.基于g-期望的Hlder不等式[J].山东大学学报(理学版),2006,41(4):28-31. 被引量:3
  • 2范胜君.g-期望关于凸(凹)函数的Jensen不等式[J].数学年刊(A辑),2006,27(5):635-644. 被引量:3
  • 3PENG Shi-ge. BSDE and related g - expectations [ C ]// Backward stochastic differential equations. El Karoui N, Mazliak L. (ed) , Harlow : Addison Welsey Longman, 1997,141-159. 被引量:1
  • 4BRIAND P, COQUET F, HU Ying, et al. A converse comparisontheorem for BSDEs and related properties of g - expectation [ J]. Electronic Comunications Probability, 2000,5 : 101-117. 被引量:1
  • 5COQUET F, HU Ying, MACUTEE M J, et al. Filtration consistentnonlinear expeetatios and related g - expectation [ J ]. Probability Theory & Related Fields, 2002,123 : 1-27. 被引量:1
  • 6朱红艳.关于g期望的几个经典不等式.云南大学学报:自然科学版,2006,28(2):318-321. 被引量:1
  • 7CHEN Zeng-jing, EPSTEIN L. Ambiguity, risk and asset returns in continuous time [ J ]. Ecomometrica, 2002,70 : 1403- 1443. 被引量:1
  • 8PARDOUX E, PENG Shi-ge. Adapted solution of a backward stochastic differential equation [ J ]. Systems Control Letters, 1990,14:55-61. 被引量:1
  • 9PENG Shi-ge. A general dynamic programming principle and Hamilton -Bellman equation [ J ]. Stochastics, 1992,38 (2) : 119-134. 被引量:1
  • 10El KAROUI N, PENG Shi-ge, QUENCE M C. Backward stochastic differential equation in finance[ J]. Mathematical Finance, 1997,7 ( 1 ) : 1-71. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部