摘要
利用上下解的方法,讨论了非线性四阶常微分方程y(4)=f(t,y,y',y″,y)满足条件g0(y(a),y'(a))=0,g1(y'(a),y″(a))=0,g2(y″(a),y(a))=0h(y(c),y'(c),y″(c),y(c))=0的非线性两点边值问题解的存在性,其中函数f,gi和h是具有一定单调性质的连续函数。
The methods of up-lower solution are used to study the existence of solutions of two point boundary value problems for nonlinear4th order differential equation with the boundary conditions where functions f,g,i and h have continuous functions with certain monotone con di tions.
出处
《中国民航学院学报》
2003年第4期61-64,共4页
Journal of Civil Aviation University of China
关键词
非线性四阶常微分方程
非线性两点边值问题
解的存在性
nonlinear fourth order differential equation
nonlinear two point boundary value prob lems
existence of solutions