期刊文献+

一类经典Banach格上保不交算子的矩阵刻画 被引量:3

Matrix Characterization of a Type of Disjoin Preserving Operators on Classical Banach Lattices
下载PDF
导出
摘要 对向量格Rn 到Rm 的保不交算子进行矩阵刻画 ,即矩阵的每行至多有一个元素不为零 .并把此结果推广到了经典Banach格c0 和lp(1≤p <∞ )到l∞(c或c0 )的有界保不交算子的情况 .讨论了具有不交Schauder基的Banach格上有界保不交算子的矩阵特征 . The characterization of disjoint preserving operators from R n to R m is presented by means of the matrix with the property that there is at most one nonzero element in every row. And this resul t is generalized to the characterizations of bounded disjoint preserving operato rs from classical Banach lattices c 0 and l p(1≤p<∞) to l ∞ , c or c 0 . In addition, the matrix characteristic of bounded disjoint p reserving operators on Banach lattices with the disjoint Schauder basis is discu ssed similarly.
出处 《西南交通大学学报》 EI CSCD 北大核心 2003年第4期438-440,共3页 Journal of Southwest Jiaotong University
关键词 算子 保不交算子 BANACH格 矩阵 lattice operator disjoint preserving operator Banach lattice matrix
  • 相关文献

参考文献6

  • 1Zaanen A C. Introduction to operator theory in Riesz space[ M]. Berlin : Sping-Verlag, 1997: 13-53. 被引量:1
  • 2Melyer M. Le stabilisateur d' un espace vectoriel reticule[J]. C. R. Acad. Sci. , 1976;A283: 249-250. 被引量:1
  • 3Pagter B De . A note on disjointness preserving operators[J]. Proc. Amer. Math. , 1984; 90: 534-549. 被引量:1
  • 4Abramovich C D,Kitover A K. A solution to a problem on invertible disjointness preserving operators[J]. Proc. Amer.Math. , 1998 ; 126 : 1501-1505. 被引量:1
  • 5Aliprantis C D, Burkinshaw O. Positive operators [ M ]. Orlando: Academic Press, 1985 : 74-126. 被引量:1
  • 6Angus E T. Introduction to functional analysis[M]. New York: John Wiley & Sons,Inc. , 1970: 219-223. 被引量:1

同被引文献15

  • 1Huijsmans C B,Pagter B de. Subalgebra and Riesz subspaces of an falgebra [J]. Proc London Math Soc,1984, 48:61-74. 被引量:1
  • 2Beukers F, Huijsmam C B, Pagter B de. Unital embedding and complexification of f-algebra[J]. Math, Z,1983,83:131 - 144. 被引量:1
  • 3Aliprantis C D, Burkinshaw O. Positive Operators [M].Orlando: Academic Press, 1985: 74- 126. 被引量:1
  • 4Zaanen A C.Introduction to operator throry in Riesz spaces[ M]. New York Berlin Heidelberg:spinger-Verlag,1997,13-145. 被引量:1
  • 5Huijsmans C B, Pager B de. Ideal theory in f-algebra[J]. Trans Amer Math Soc, 1982,269:225-245. 被引量:1
  • 6Huijsmans C B. An inequality in complex Riesz algebra[J]. Studia Sc Math Hung, 1985,20:29 - 32. 被引量:1
  • 7ALIPRANTIS C D, BURKINSHAW O. Positive Operators [M]. Orlando: Academic Press, 1985: 88-126. 被引量:1
  • 8LUXEMBERG W A J, PAGTER B D. Maharam Extensions of Operators and f-Modules [J]. Positivity, 2002, 6(6) : 147-190. 被引量:1
  • 9TURAN B. On f-Linearity and f-Orthomorphisms [J]. Positivity, 2000, 4(4) : 293-301. 被引量:1
  • 10HART D R. Some Properties of Disjointness Preserving Operators [J]. Math Proc A, 1985, 88(1): 183-197. 被引量:1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部