期刊文献+

Homological properties of modules characterized by matrices

用矩阵刻画模的同调性质(英文)
下载PDF
导出
摘要 Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and only if M_α/r_(M_α)(R^((β))A) ≈ Hom_R(R^((β))A,M) ifand only if r_(M_β)l_(R^((β)))(A) = AM_α. Thus, the notion of (m,n)-injectivity was extended.Moreover, ( α, β) -flatness was characterized via annihilators of matrices, factorizations ofhomomorphisms as well as homological groups so that (m, n)-flat modules, f-projective modules andn-projective modules were consolidated under the notion of (α, β)-flat modules. Furthermore, acharacterization of left R-ML modules and some equivalent conditions for R^((β)) to be left R-MLwere presented. Consequently, the notions of coherent rings, (m, n)-coherent rings and π-coherentrings were consolidated under that of (α, β)-coherent rings. 用环R上的矩阵研究了R 模的一些同调性质.对于任给的基数α,β以及β×α行有限矩阵A,证明了Ext1R(R(α) /R(β)A,M)=0当且仅当Mα/rMα(R(β)A) HomR(R(β)A,M)当且仅当rMβlR(β) (A)=AMα,进一步推广了(m,n) 内射性的概念,并从矩阵的零化子,同态的分解和同调群等角度给出(α,β) 平坦性的等价刻画,从而使(m,n) 平坦模,f 投射模和n 投射模统一到(α,β) 平坦模的概念之下.此外还给出了左R ML模的一个刻画和R(β)A是左R ML模的等价条件,从而把凝聚环、(m,n) 凝聚环、π凝聚环等概念统一到(α,β) 凝聚环的概念之下.
机构地区 东南大学数学系
出处 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期239-243,共5页 东南大学学报(英文版)
基金 TheFoundationofGraduateCreativeProgramofJiangsu(No.xm04 10),theTeachingandResearchAwardProgramforOutstandingYoungTeachersinHigherEducationInstitutionsofMOE,P.R.C.
关键词 β)-injective module β) -flat module R-ML module β)-coherent ring (α,β)-内射模 (α,β)-平坦模 R-ML模 (α,β)-凝聚环
  • 相关文献

参考文献9

  • 1ClarkeT.On-1 projectivemodules[]..1976 被引量:1
  • 2AndersonF,FullerK.Ringsandcategoriesofmodules[]..1992 被引量:1
  • 3Gruson L,RaynaudM.Criteres de platitude et ed projective[].Inventiones Mathematicae.1971 被引量:1
  • 4Cam illo V.Coherence for polynom ial rings[].JAlgebra.1990 被引量:1
  • 5Chen J,D ing N,Li Y,et al.On (m, n )-injectivity ofmodules[].Communications in Algebra.2001 被引量:1
  • 6Zhang X,Chen J,Zhang J.On (m, n )-injective modules and (m, n )-coherent rings[].Algebra Colloquium.2005 被引量:1
  • 7Simon D.-flat and -projective modules[].BullAcad Polon Sci Ser SciMath Astron Phys.1972 被引量:1
  • 8Azumaya G,FullerK.Finite splitness and finite projectivity[].JAlgebra.1987 被引量:1
  • 9Zhu S.On rings over which every flat leftmodule is finitely projective[].JAlgebra.1991 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部