期刊文献+

细观力学有限元法预测复合材料宏观有效弹性模量 被引量:36

Predicting Macroscopic Effective Elastic Moduli of Composites by Micro-mechanics FEM
下载PDF
导出
摘要 基于能量等效原理提出了复合材料有效弹性模量的定义 ,并指出了该定义的基础及前提条件。为从理论上计算复合材料宏观有效弹性模量 ,建立了通过细观力学有限元法计算复合材料有效弹性模量的方法。复合材料宏观弹性模量 ,是通过对复合材料细观结构代表性体积元的力学响应的计算来得到 ,在该计算方法中 ,给出了施加简便的边界载荷以及恰当的边界变形约束条件的方法。数值计算结果与部分试验结果具有较好的一致性 。 A definition of composite effective elastic moduli is presented based on the energy equivalence principle and its basis and premise are pointed out. To predict macroscopic effective elastic moduli of composites, a computational method is established based on micro mechanics finite element method. The computational method predicts the effective elastic moduli of composites through calculating mechanical responses of a composite micro structure representative volume element. The method of applying proper boundary load and boundary deformation constraint condition, The numerical results agree well with available experimental results, which shows that the computational method can predict the effective elastic moduli of composites correctly.
出处 《燃气涡轮试验与研究》 2003年第3期11-15,18,共6页 Gas Turbine Experiment and Research
关键词 复合材料 有效弹性模量 细观力学有限元法 均匀边界条件 composite micro mechanics finite element method effective elastic moduli representative volume element
  • 相关文献

参考文献9

  • 1[1]Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problem [C]. London: Proceedings of the Royal Society Series A, 1957. 被引量:1
  • 2[2]Hill R. A Self-consistent Mechanics of Composite Materials [J]. J Mech Phys Solids, 1965,13:213-222. 被引量:1
  • 3[3]Mori T, Tanaka K. Average Stress in Matrix and Average Enengy of Materials with Misfitting Inclusions[J]. Acta Metall,1973,21:571-574. 被引量:1
  • 4[4]Caruso J J. Application of Finite Element Substructuring to Composites Micromechanics [R]. NASA TM-83729, 1984. 被引量:1
  • 5[5]Brockenbrough J R, Suresh S, Wienecke H A. Deformation of MMCs with Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape [J]. Acta Metall Mater, 1991, 39: 735-752. 被引量:1
  • 6[6]Zhang W C, Evans K E. Numerical Prediction of Mechanical Properties of Anisotropic Composite Materials [J]. Computers and Structures, 1988,29(3):413-422. 被引量:1
  • 7[7]Fang Daining, Liu Tieqi . On the effect of Fiber Shape and Packing Array on Elastic Properties of Fiber-Polymer-Matrix Composites [J]. Inter J Polymeric Mater, 1996,34(1): 75-90. 被引量:1
  • 8[8]Nakamura T, Suresh S. Effects of thermal residual stresses and fiber packing on deformation of metal matrix composites [J]. Acta Metall. Mater., 1993, 41(6):1665-1681. 被引量:1
  • 9[9]Sun C T, Chen J L. Mechanical Characterization of SCS-6/Ti-6-4 Metal Matrix Composite [J]. J Comp Mater, 1990,24:1029-1059. 被引量:1

同被引文献336

引证文献36

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部