摘要
基于能量等效原理提出了复合材料有效弹性模量的定义 ,并指出了该定义的基础及前提条件。为从理论上计算复合材料宏观有效弹性模量 ,建立了通过细观力学有限元法计算复合材料有效弹性模量的方法。复合材料宏观弹性模量 ,是通过对复合材料细观结构代表性体积元的力学响应的计算来得到 ,在该计算方法中 ,给出了施加简便的边界载荷以及恰当的边界变形约束条件的方法。数值计算结果与部分试验结果具有较好的一致性 。
A definition of composite effective elastic moduli is presented based on the energy equivalence principle and its basis and premise are pointed out. To predict macroscopic effective elastic moduli of composites, a computational method is established based on micro mechanics finite element method. The computational method predicts the effective elastic moduli of composites through calculating mechanical responses of a composite micro structure representative volume element. The method of applying proper boundary load and boundary deformation constraint condition, The numerical results agree well with available experimental results, which shows that the computational method can predict the effective elastic moduli of composites correctly.
出处
《燃气涡轮试验与研究》
2003年第3期11-15,18,共6页
Gas Turbine Experiment and Research
关键词
复合材料
有效弹性模量
细观力学有限元法
均匀边界条件
composite
micro mechanics
finite element method
effective elastic moduli
representative volume element