摘要
对于拓扑空间Y,连续映射f∶X′→X可诱导函数空间映射f#Y∶YX→YX′,其中f#Y(g)=g f,g∶X→Y.文献[1]证明了:若f∶X′→X为上纤维化,则f#Y∶YX→YX′是纤维化.本文将证明:其逆命题也成立.
Let Y be a topological space, a continuous map f : X′ →X may induce the map between function spaces, that is f#Y : YX →YX′ , among which, f#Y (g) =g f, g: X →Y. It has been proved in reference that if f: X′→X is a cofibration, then f#Y:YX →YX′ is a fibration. In this paper, the authors will prove the inverse of this result.
出处
《海南大学学报(自然科学版)》
CAS
2003年第2期97-99,共3页
Natural Science Journal of Hainan University