期刊文献+

区间映射与其诱导函数包络序列熵关系

The Relation of Sequence Entropy Between Interval Map and its Function Envelope Induced
下载PDF
导出
摘要 研究了区间映射的拓扑序列熵与其诱导的函数包络上的拓扑序列熵之间的关系.证明了区间映射诱导的函数包络的拓扑序列熵只能为0或+∞,并且当区间映射的拓扑序列熵大于0时,其诱导的函数包络上的拓扑序列熵为+∞. We mainly study the relationship of the topological sequence entropy between the interval map and its function envelope. We prove that the topological sequence entropy of the function envelope induced by interval map is either zero or infinite, and when the topologieal sequence entropy of the interval map is greater than zero, the topological sequence entropy of the function envelope induced by interval map is infinite.
作者 赵海林
出处 《大学数学》 2016年第3期24-29,共6页 College Mathematics
基金 国家自然基金(11001071 11171320) 中央高校基本科研业务费(2015HGZX0017)
关键词 区间映射 函数包络 拓扑序列熵 the interval map function envelope topological sequence entropy
  • 相关文献

参考文献8

  • 1Adler R L, Konheim A G and McAndrew MH. Topological entropy[J]. Trans. Amer. Math. Soc., 1965, 114.. 309--319. 被引量:1
  • 2Bowen R. Entropy for group endomorphisms and homogeneous space[J]. Trans. Amer. Math. Soc. , 1971, 153: 401--414. 被引量:1
  • 3Goodman T N T. Topological sequence entropy[J]. Proc. London Math. Soc., 1974, 29.. 331--350. 被引量:1
  • 4Auslander J, Kolyada S and Snoha L. Functional envelope of a dynamical system[J]. Nonlinearity, 2007, 20(9) .. 2245--2269. 被引量:1
  • 5Matviichuk M. Entropy of induced maps for one dimensional dynamics [J]. Grazer Math. Ber. In: A. N. Sharkovsky, I. M. Sushko (Eds.) Proc. ECIT ', 2009,354(8)..180--185. 被引量:1
  • 6Matviichuk M. On the dynamics of subcontinua of a tree[J]. Journal of Difference Equations and Applications, 2011,17(11) .. 1--11. 被引量:1
  • 7Kolyada S and Semikina J. On topological entropy.. When positivity implies + infinity[J]. Proceedings of the American mathematical society, 2014,30(2) .. 1-- 14. 被引量:1
  • 8Yosida K. Functional Analysis[M]. Berlin.. Springer-Verlag, 1980. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部