期刊文献+

Weight hierarchies of linear codes satisfying the almost chain condition 被引量:9

Weight hierarchies of linear codes satisfying the almost chain condition
原文传递
导出
摘要 The weight hierarchy of a linear [n, k;q] code C over GF(q) is the sequence (d1,d2,..., dk) where dr is the size of the smallest support of an r-dimensional subcode of C. An [n,k;q] code satisfies the chain condition if there exists subcodes D1 D2 … Dk = C of C such that Dr has dimension r and support of size dr for all r. Further, C satisfies the almost chain condition if it does not satisfy the chain condition, but there exist subcodes Dr of dimension r and support of size dr for all r such that D2 D3 Dk = C and D1 D3. A simple necessary condition for a sequence to be the weight hierarchy of a code satisfying the almost chain condition is given. Further, explicit constructions of such codes are given, showing that in almost all cases, the necessary conditions are also sufficient. The weight hierarchy of a linear [n, k;q] code C over GF(q) is the sequence (d1,d2,..., dk) where dr is the size of the smallest support of an r-dimensional subcode of C. An [n,k;q] code satisfies the chain condition if there exists subcodes D1 D2 … Dk = C of C such that Dr has dimension r and support of size dr for all r. Further, C satisfies the almost chain condition if it does not satisfy the chain condition, but there exist subcodes Dr of dimension r and support of size dr for all r such that D2 D3 Dk = C and D1 D3. A simple necessary condition for a sequence to be the weight hierarchy of a code satisfying the almost chain condition is given. Further, explicit constructions of such codes are given, showing that in almost all cases, the necessary conditions are also sufficient.
出处 《Science in China(Series F)》 2003年第3期175-186,共12页 中国科学(F辑英文版)
基金 supported by the Norwegian Research Council and the National Natural Science Foundation of China(Grant No.10271116).
关键词 weight hierarchy linear code almost chain condition. weight hierarchy, linear code, almost chain condition.
  • 相关文献

参考文献16

  • 1[1]Wei, V. K.. Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 1991, 37:1412-1418. 被引量:1
  • 2[2]Helleseth, T., Klφve, T., Mykkeltveit, J., The weight distribution of irreducible cyclic codes with block lengths nl((ql - 1)/N), Discrete Math., 1977, 18:179-211. 被引量:1
  • 3[3]Forney, G. D., Dimension/length profiles and trellis complexity of linear block codes, IEEE Trans. Inform.Theory, 1994, 40:1741 1752. 被引量:1
  • 4[4]Klφve, T., The worst-case probability of undetected error for linear codes on the local binomial channel,IEEE Trans. Inf. Theory, 1996, 42:172 179. 被引量:1
  • 5[5]Klφve, T., Minimum support weights of binary codes, IEEE Trans. Inform. Theory, 1993, 39:648-654. 被引量:1
  • 6[6]Chen, W., Klφve, T., The weight hierarchies of q-ary codes of dimension 4, IEEE Trans. Inform. Theory,1996, 42:2265-2272. 被引量:1
  • 7[7]Chen, W., Klφve, T., Bounds on the weight hierarchies of extremal non-chain codes of dimension 4, Applicable Algebra in Eng., Commun. and Computing, 1997, 8:379 386. 被引量:1
  • 8[8]Chen, W., Klφve, T., Bounds on the weight hierarchies of linear codes of dimension 4, IEEE Trans. Inf.Theory, 1997, 43:2047-2054. 被引量:1
  • 9[9]Chen, W., Klφve, T., Weight hierarchies of extremal non-chain binary codes of dimension 4, IEEE Trans.Inf. Theory, 1999, 45:276-281. 被引量:1
  • 10[10]Chen, W., Klφve, T., Weight hierarchies of linear codes of dimension 3, Journal of Statistical Planning and Inference, 2001, 94(2): 167-179. 被引量:1

同被引文献20

引证文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部