期刊文献+

A Class of the Hamming Weight Hierarchy of Linear Codes with Dimension 5 被引量:1

A Class of the Hamming Weight Hierarchy of Linear Codes with Dimension 5
原文传递
导出
摘要 The weight hierarchy of a [n, k; q] linear code C over Fq is the sequence (d1,…, dr,… , dk), where dr is the smallest support weight of an r-dimensional subcode of C. In this paper, by using the finite projective geometry method, we research a class of weight hierarchy of linear codes with dimension 5. We first find some new pre- conditions of this class. Then we divide its weight hierarchies into six subclasses, and research one subclass to determine nearly all the weight hierarchies of this subclass of weight hierarchies of linear codes with dimension 5. The weight hierarchy of a [n, k; q] linear code C over Fq is the sequence (d1,…, dr,… , dk), where dr is the smallest support weight of an r-dimensional subcode of C. In this paper, by using the finite projective geometry method, we research a class of weight hierarchy of linear codes with dimension 5. We first find some new pre- conditions of this class. Then we divide its weight hierarchies into six subclasses, and research one subclass to determine nearly all the weight hierarchies of this subclass of weight hierarchies of linear codes with dimension 5.
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第5期442-451,共10页 清华大学学报(自然科学版(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 61303212 and 61170080) the State Key Program of the National Natural Science of China (Nos. 61332019 and U1135004) the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (No. CZY14019)
关键词 generalized Hamming weight weight hierarchy linear code difference sequence finite projective geometry generalized Hamming weight weight hierarchy linear code difference sequence finite projective geometry
  • 相关文献

参考文献12

二级参考文献54

  • 1WANG WeiYang1,FENG RongQuan1 & FENG KeQin2 1School of Mathematical Sciences,Peking University,Beijing 100871,China,2Department of Mathematical Sciences,Tsinghua University,Beijing 100084,China.Inhomogenous quantum codes (Ⅰ):additive case[J].Science China Mathematics,2010,53(9):2501-2510. 被引量:4
  • 2罗守山,陈萍,杨义先.广义汉明重量下限函数Lr(j,d)的新证明[J].北京邮电大学学报,1996,19(4):67-70. 被引量:6
  • 3杨义先,胡正名.线性等重码的结构分析[J].电子学报,1990,18(6):1-8. 被引量:21
  • 4[1]Wei, V. K.. Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 1991, 37:1412-1418. 被引量:1
  • 5[2]Helleseth, T., Klφve, T., Mykkeltveit, J., The weight distribution of irreducible cyclic codes with block lengths nl((ql - 1)/N), Discrete Math., 1977, 18:179-211. 被引量:1
  • 6[3]Forney, G. D., Dimension/length profiles and trellis complexity of linear block codes, IEEE Trans. Inform.Theory, 1994, 40:1741 1752. 被引量:1
  • 7[4]Klφve, T., The worst-case probability of undetected error for linear codes on the local binomial channel,IEEE Trans. Inf. Theory, 1996, 42:172 179. 被引量:1
  • 8[5]Klφve, T., Minimum support weights of binary codes, IEEE Trans. Inform. Theory, 1993, 39:648-654. 被引量:1
  • 9[6]Chen, W., Klφve, T., The weight hierarchies of q-ary codes of dimension 4, IEEE Trans. Inform. Theory,1996, 42:2265-2272. 被引量:1
  • 10[7]Chen, W., Klφve, T., Bounds on the weight hierarchies of extremal non-chain codes of dimension 4, Applicable Algebra in Eng., Commun. and Computing, 1997, 8:379 386. 被引量:1

共引文献22

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部