期刊文献+

基于激发态的哈密顿量等级系统 被引量:2

Hierarchy of Hamiltonians Based on Higher Excited States
下载PDF
导出
摘要 超对称性量子力学中的超势可以利用激发态来生成,得到广义超对称形式.因此,能够利用广义超对称形式,可构造出与已知哈密顿量等能谱的哈密顿量等级系统.再以线性谐振子为例说明. In this paper,the formalism of supersymmetric quantum mechanics is generalized to the cases where the superpotential is generated by higher excited eigenstates.It is shown that generalized supersymmetric formalism can be used to construct a hierarchy of Hamiltonians isospectral to a given potential.Then the idea is illustrated using the example of one-dimensional harmonic oscillator.
出处 《南昌大学学报(工科版)》 CAS 2003年第1期33-38,共6页 Journal of Nanchang University(Engineering & Technology)
关键词 激发态 哈密顿量等级系统 超对称性量子力学 伴侣势 线性谐振子 广义超对称形式 超势 SUSY QM partner potential hierarchy of Hamiltonians one-dimensional harmonic oscillator
  • 相关文献

参考文献8

  • 1[1]Witten E. Dynamical Breaking of Supersymmetry[J]. Nucl Phys B, 1981, (188):513- 554. 被引量:1
  • 2[2]Cooper F, Khare A and Sukhatme U. Supersymmetry and Quantum Mechanics[J] .Physics Reports, 1995, (251):267 - 385. 被引量:1
  • 3[3]Dutt R, Khare A and Sukhatme U. Exactness of Supersymmetric WKB Spectra for Shape - invariant Potentials[J]. Phys Lett B, 1986, (181) :295 - 298. 被引量:1
  • 4[4]Dabrowska J, Khare A and Sukhatme U. Explicit Wavefunetions for Shape- invariant Potentials by Operator Techniques[J].Jour Phys A, 1988, (21) :L195 - L200. 被引量:1
  • 5[5]Cooper F, Ginocchino J N and Wipf A. Derivation of the S - matrix Using Supersymmetry[ J ]. Phys Lett A, 1988, ( 129 ):145 - 147. 被引量:1
  • 6[6]Khare A and Sukhatme U. Scattering Amplitudes for Supersymmetrie Shape - invariant Potentials by Operator Methods[J].Jour Phys A, 1988, (21) :L501 - L508. 被引量:1
  • 7[7]Infeld L and Hull T E. The Faetorization Method[J]. Rev Mod Phys, 1951, (23) :21 - 68. 被引量:1
  • 8[8]Robnik M. Supersymmetric Quantum Mechanics Based on Higher Excited States[J]. Jour Phys A: Math Gen, 1997, (30):1 287-1 294. 被引量:1

同被引文献11

  • 1崔红宇,田维,杨新娥.超对称量子力学中超势的应用[J].山西师范大学学报(自然科学版),2006,20(2):41-43. 被引量:3
  • 2Witten E.Dynamical Breaking of Supersymmetry[J].Nucl Phys B,1981,188(3):513-554. 被引量:1
  • 3Gangopadhyaya A,Mallow J V,Rasinariu C,et al.Exact Solutions of the Schroedinger Equation:Connection between Supersymmetric Quantum Mechanics and Spectrum Generating Algebras[J].Chinese Journal of Physics,2001,39(2):101-121. 被引量:1
  • 4Filho E D,Ricotta R M.The Hierarchy of Hamiltonians for a Restricted Class of Natanzon Potentials[J].Brazilian Journal of Physics,2001,31(2):334-339. 被引量:1
  • 5Cooper F,Khare A,Sukhatme U.Supersymmetry and Quantum Mechanics[J].Physics Reports,1995,251 (5/6):267-385. 被引量:1
  • 6Robnik M.Supersymmetric Quantum Mechanics Based on Higher Excited States[J].Jour Phys A:Math Gen,1997,30(4):1 287-1 294. 被引量:1
  • 7Fred Cooper, Avinash Khare, Uday Sukhatme. Supersymmetry and Quantum Mechanics [ J ]. Physics Reports, 1995,251:267 - 385. 被引量:1
  • 8Marko Robnik. Supersymmetric Quantum mechanics Based on Higher Excited States [ J ]. J Phy A : Math Gen, 1997,30:1 287 -1 294. 被引量:1
  • 9Asim Gangopadhyaya,Jeffry V Mallow, Uday P Sukhatme. Broken Supersymmetric Shape Invariant Systems and Their Potential Algebras [ J ]. Physics Letters A, 2001, 283:279 - 284. 被引量:1
  • 10周海军,孔繁梅.超对称量子力学中─维形状不变势与严格解[J].南开大学学报(自然科学版),1997,30(3):56-60. 被引量:3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部