期刊文献+

基于激发态的一维无限深势阱的等谱势

The Potentials Isospectral to Infinite One-dimensional Potential Well Based on Higher Excited States
下载PDF
导出
摘要 超对称性量子力学形式可以利用激发态来生成超势,得到广义化超对称形式.利用广义化超对称形式,即使用一维无限深势阱对应的激发态波函数来生成超势,并通过逐次因子化方法,构造出了一系列与一维无限深势阱等能谱的新的势函数,即构造出了一个与一维无限深势阱等能谱的哈密顿量等级系统,而且能够得到该等级系统中所有的哈密顿量的能谱和能量本征函数. Abstract:In this paper, the formalism of the supersymmetric quantum mechanics is generalized to the cases where the superpotential is generated by higher excited eigenstates. It is shown that generalized supersymmetric forrealism can be used to construct the potentials isospectral to infinite one - dimensional potential well by repeated refactorizations. Obviously, the hierarchy of Hamihonians isospectral to infinite one - dimensional potential well is constructed and the energy eigenvalues and eigenfunctions of the Hamiltonians in the hierarchy are derived.
作者 陈华英
出处 《南昌大学学报(工科版)》 CAS 2006年第3期274-277,共4页 Journal of Nanchang University(Engineering & Technology)
关键词 超对称性量子力学 哈密顿量等级系统 伴侣势 等谱势 一维无限深势阱 SUSY QM hierarchy of hamiltonians partner potential isospectral potentials infinite one - dimensional potential well
  • 相关文献

参考文献6

  • 1Witten E.Dynamical Breaking of Supersymmetry[J].Nucl Phys B,1981,188(3):513-554. 被引量:1
  • 2Gangopadhyaya A,Mallow J V,Rasinariu C,et al.Exact Solutions of the Schroedinger Equation:Connection between Supersymmetric Quantum Mechanics and Spectrum Generating Algebras[J].Chinese Journal of Physics,2001,39(2):101-121. 被引量:1
  • 3Filho E D,Ricotta R M.The Hierarchy of Hamiltonians for a Restricted Class of Natanzon Potentials[J].Brazilian Journal of Physics,2001,31(2):334-339. 被引量:1
  • 4Cooper F,Khare A,Sukhatme U.Supersymmetry and Quantum Mechanics[J].Physics Reports,1995,251 (5/6):267-385. 被引量:1
  • 5Robnik M.Supersymmetric Quantum Mechanics Based on Higher Excited States[J].Jour Phys A:Math Gen,1997,30(4):1 287-1 294. 被引量:1
  • 6陈华英,龚仁山.基于激发态的哈密顿量等级系统[J].南昌大学学报(工科版),2003,25(1):33-38. 被引量:2

二级参考文献8

  • 1[1]Witten E. Dynamical Breaking of Supersymmetry[J]. Nucl Phys B, 1981, (188):513- 554. 被引量:1
  • 2[2]Cooper F, Khare A and Sukhatme U. Supersymmetry and Quantum Mechanics[J] .Physics Reports, 1995, (251):267 - 385. 被引量:1
  • 3[3]Dutt R, Khare A and Sukhatme U. Exactness of Supersymmetric WKB Spectra for Shape - invariant Potentials[J]. Phys Lett B, 1986, (181) :295 - 298. 被引量:1
  • 4[4]Dabrowska J, Khare A and Sukhatme U. Explicit Wavefunetions for Shape- invariant Potentials by Operator Techniques[J].Jour Phys A, 1988, (21) :L195 - L200. 被引量:1
  • 5[5]Cooper F, Ginocchino J N and Wipf A. Derivation of the S - matrix Using Supersymmetry[ J ]. Phys Lett A, 1988, ( 129 ):145 - 147. 被引量:1
  • 6[6]Khare A and Sukhatme U. Scattering Amplitudes for Supersymmetrie Shape - invariant Potentials by Operator Methods[J].Jour Phys A, 1988, (21) :L501 - L508. 被引量:1
  • 7[7]Infeld L and Hull T E. The Faetorization Method[J]. Rev Mod Phys, 1951, (23) :21 - 68. 被引量:1
  • 8[8]Robnik M. Supersymmetric Quantum Mechanics Based on Higher Excited States[J]. Jour Phys A: Math Gen, 1997, (30):1 287-1 294. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部