摘要
在带有广义优先关系(GPRs)的工程项目中,把2n个平行工序调整为n个顺序工序对是一类典型的带有GPRs的资源限制项目排序问题。为了给该类问题的解决提供理论和方法,研究了在GPRs下,如何将8个平行工序调整为对总时差影响最小的4个顺序工序对。通过运用重心定理、行偶亏值定理和最佳行偶定理等现有相关结论,将带有严格优先关系的同类问题算法进行拓展,提出了求解该带有GPRs的平行工序顺序优化问题的简单算法,并进行理论上的证明。最后,通过算例演示了该算法的效用。
In projects with generalized precedence relations( GPRs),a typical problem of resource-constrained project scheduling with GPRs is that 2n parallel activities are adjusted to n sequence activities pairs. In order to provide theory and method for solving this kind of problem,this paper considers an optimal 4 ordinal activity pairs of 8 parallel activities. This paper improves algorithms of similar problems with strict precedence relations by using the barycenter theorem,row-mate 's tardiness theorem and optimal row-mate theorem,and then proposes a simple algorithm for the optimal sequence of parallel activities with GPRs. Finally,an illustration indicates the effectiveness of the algorithm.
出处
《南昌工程学院学报》
CAS
2016年第3期20-26,共7页
Journal of Nanchang Institute of Technology
基金
江西省科技计划青年基金项目(20151BAB211015)
关键词
项目调度
优化
行偶
序偶
亏值
project scheduling
optimization
row-mate
sequence-mate
tardiness