摘要
把2n个平行工序调整为n个顺序工序对是一类典型的资源限制项目排序问题,到目前为止,没有简便有效的解决方法.为了给该类问题的解决提供理论和方法,针对八个平行工序调整为四个顺序工序对的优化决策问题,在重心定理、行偶亏值定理和最佳行偶定理的基础上,提出了标准规范法,并对其进行了理论上的证明.最后,通过算例对该算法的简单可行性进行阐释.
It is a typical problem of project scheduling with resource constraints that 2n parallel activities are adjusted to n sequence activities chains. There haven′t convenient and effective methods to solve it from now on.In order to provide theory and method for solving this kind of problem,aiming at a subproblem of it that eight parallel activities are adjusted to four pairs of sequence activities,on the basis of barycenter theorem, row-mate′s tardiness theorem and optimal row-mate theorem,the standard-criterion algorithm is designed and proved. Furthermore, Illustrational examples indicate that the arithmetic is convenient and effective to application.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第23期18-26,共9页
Mathematics in Practice and Theory
基金
国家自然科学基金(70671040)
关键词
项目管理
标准规范法
行偶
序偶
亏值
project management
standard-criterion algorithm
row-mate
sequence-mate
tardiness