摘要
讨论在deSitter空间Sn+pp中具有平行的单位平均曲率向量的紧致类空子流形Mn的第二基本形式长度拼挤问题,通过估计第二基本形式模长平方的Laplacian,得到deSitter空间中的余维数压缩定理,给出了具有常数量曲率的这种子流形是全脐球面的一个充分条件.
The pinching problems are discussed on the length of the second fundamental form of compact spacelike submanifold Mn with unit parallel mean curvature vector in de Sitter space Sn+pp, and the theory of reduction of the codimension is obtained in de Sitter space through evaluating the laplacian of square of the length. In particular, a sufficient condition for Mn with constant scalar curvature to be totally umbilical is given.
出处
《浙江大学学报(理学版)》
CAS
CSCD
2003年第3期252-255,共4页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金青年基金资助项目(10201028).