摘要
从Frobenius-Perron积分方程出发,将混沌映射的不变分布看成Frobenius-Perron算子的不动点,经过简化后得到了该不动点的逼近迭代式。在样本数较少的情况下,采用区间迭代算法完成了不变分布的迭代逼近。该方法克服了直方图法要求样本数目大,统计误差明显的缺点,特别适用于分析样本数受限的实际系统。
From Frobenious-Perron equation the invariant probability distribution is taken for the fixed point of Frobenious-Perron operator and the simplified iteration expression of this fixed point is deduced. With limited sample data the invariant probability distribution of chaotic map can be calculated using the domain iteration method. Using this method, difficulties when using histogram method can be overcome. It is especially useful when sample data are limited in experiment.
出处
《电路与系统学报》
CSCD
2003年第2期6-9,共4页
Journal of Circuits and Systems
关键词
混沌映射
不变分布
迭代算法
直方图
chaotic map
invariant probability
distribution
iteration method
histogram