期刊文献+

计算不变密度的一种二次样条最大熵方法(英文)

A quadratic spline maximum entropy method for the computation of invariant densities
下载PDF
导出
摘要 用二次样条函数来数值逼近对应于非奇异变换的Frobenius-Perron算子的不变密度.所提出的方法消除了使用多项式函数的最大熵方法中出现的坏条件性.只要不变密度有足够的光滑度,由于算法的高阶收敛速率,随着矩量函数个数的增加,数值计算的精度会迅速增加.给出的数值例子验证了算法收敛速度的理论分析. The numerical recovery of an invariant density of the Frobenius-Perron operator corresponding to a nonsingular transformation is depicted by using quadratic spline functions. We implement a maximum entropy method to approximate the invariant density. The proposed method removes the ill-conditioning in the maximum entropy method, which arises by the use of polynomials. Due to the smoothness of the functions and a good convergence rate, the accuracy in the numerical calculation increases rapidly as the number of moment functions increases. The numerical results from the proposed method are supported by the theoretical analysis.
出处 《上海师范大学学报(自然科学版)》 2015年第3期291-303,224,共13页 Journal of Shanghai Normal University(Natural Sciences)
关键词 Frobenius—Perron算子 不变密度 最大熵 样条函数 Frobenius-Perron operator invariant density maximum entropy spline function
  • 相关文献

参考文献25

  • 1LASOTA A, MACKEY M. Chaos, Fractals, and Noise[M]. 2nd ed. New York: Springer, 1994. 被引量:1
  • 2ASTON PJ, DELLNITZ M. The computation of Lypunov exponents via spatial integration with application to blowdout bifurcation[J]. Comput Methods Appl Mech Eng, 1999, 170: 223-237. 被引量:1
  • 3CHOE GH. Computational Ergodic Theory, Algorithms and Computation in Mathematics[M]. Berlin: Springer-Verlag, 2005. 被引量:1
  • 4LASOTA A, YORKE JA. On the existence of invariant measures for piecewise monotonic transformation[J]. Trans Amer Math Soc, 1973, 186: 481-488. 被引量:1
  • 5WONG S. Some metric properties of piecewise monotonic mappings of the unit interval[J]. Trans Amer Math Soc, 1978, 246: 493-500. 被引量:1
  • 6LI TY, YORKE JA. Ergodic transformations from an interval into itself[J]. Trans Amer Math Soc, 1978, 235: 177-186. 被引量:1
  • 7ULAM SM. A Collection of Mathematical Problems[M]. New York: Interscience, 1960. 被引量:1
  • 8LI TY. Finite approximation for the Frobenius-Perron operator: A solution to Ulam's conjecture[J]. J Approx Theo, 1976, 17: 177-186. 被引量:1
  • 9DING J, ZHOU A. Finite approximations of Frobenius-Perron operators: a solution of Ulam's conjecture to multi- dimensional transformations[J]. Physica D, 1996, 92: 61-68. 被引量:1
  • 10FROYLAND G. Finite approximation of Sinal-Bowen-Ruelle measures for Anosov systems in two dimensions[J]. Random Comput Dynam, 1995, 3: 251-264. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部