期刊文献+

Banach不动点定理在非线性发展变分不等式解的讨论中的应用 被引量:1

Application of Banach′s fixed pointtheorem in the discussion of non-linear evolutionary variational inequality solution
下载PDF
导出
摘要 利用 Banach不动点定理给出了一类由粘弹接触问题引出的非线性发展变分不等式解的存在惟一性 。 With the use of Banach's fixed point theorem,an existent and unique resultis given for a class of non- linear evolutionary variational inequalities arising from frictional contactproblems for viscoelastic materials.This provides a theoretical basis for using numerical methods in the solution of the inequali- ties.
机构地区 兰州大学数学系
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第2期9-11,共3页 Journal of Lanzhou University(Natural Sciences)
关键词 BANACH不动点定理 粘弹接触问题 非线性发展变分不等式 LIPSCHITZ连续 强单调性 evolutionary variational inequality Lipschitz continuity strong monotonicity Banach′s fixed point theorem
  • 相关文献

参考文献4

  • 1Han Weimin, Sofonea Mircea. Evolutionary variational inequalities arising in viscoelastic contact problems[J]. SIAM J Numer Anal, 2000,38(2):556-579. 被引量:1
  • 2Cazenave Thierry,Haraux Alain. An Introduction to Semilinear Evolution Equations [ M ]. Oxford:Clarendon Press, 1998. 被引量:1
  • 3Brezis H. Equations et inéquations non linéaires dans les espaces vectoriels en dualitē[J]. Ann Inst Fourier,1968,18:115-175. 被引量:1
  • 4Glowinski R. Numerical Methods for Nonlinear Variational Problems [M]. New York : Springer-Verlag,1984. 被引量:1

同被引文献15

  • 1丁协平.局部FC-空间内的Himmelberg型不动点定理(英文)[J].四川师范大学学报(自然科学版),2005,28(2):127-130. 被引量:23
  • 2丁协平.局部FC-空间内Himmelberg型不动点定理的推广(英文)[J].四川师范大学学报(自然科学版),2006,29(1):1-6. 被引量:13
  • 3Fan K. Fixed point and minimax theorems in locally convex topological linear spaces[J]. Proc Nat Acad Sci USA,1952,38:121-126. 被引量:1
  • 4Glicksberg I. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points [ J ]. Proe Am Math Soc, 1952,3 : 170-174. 被引量:1
  • 5Himmelberg C J. Fixed points of compact multifunctions[ J]. J Math Anal Appl,1972,38: 205-207. 被引量:1
  • 6Browder F E. The fixed point theory of multivalued mappings in topological vector spaces[ J]. Math Ann,1968,177:283-301. 被引量:1
  • 7Hadzic O. Almost fixed point and best approximations theorems in H-spaces[ J]. Bull Austral Math Soc,1996,53:447-454. 被引量:1
  • 8Fang M, Huang N J. Generalized L-KKM type theorems in topological spaces with an application[ J]. Comput Math Appl,2007, 53(12) :1897-1903. 被引量:1
  • 9Ding X P. The generalized game and the system of generalized vector quasi-equilibrium problems in locally FC-uniform spaces[ J]. Nonlinear Anal,2008,68 (4) : 1028-1036. 被引量:1
  • 10George Yuan X Z. KKM Theory and Applications in Nonlinear Analysla[ M]. New York:Marcel Dekker, 1999. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部