摘要
引进了关于H和G的强单调性概念,在Hilbert空间中研究了新的一类关于( H,η)单调算子的非线性集值算子包含.应用与( H,η)单调算子相关的预解算子技巧提出了一个迭代算法逼近其解,并且讨论了由此算法产生的迭代序列的收敛特征.
The concept of strongly monotonicity with respect to H and G and a new kind of nonlinear set-valued operator inclusions (NSVOI) with (H, η)-monotone operators are introduced in Hilbert space. Using resolvent operator technique associated with an (H, η)-monotone operator, the authors suggest a new iterative algorithm for approximating a solution to (NSVOI) and also discuss the convergence criteria of iterative sequences generated by the algo- rithm.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第5期6-9,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471113)
重庆市科委自然科学基金资助项目(CSTC,2005BB2097) .
关键词
(H
η)单调算子
预解算子技巧
算子包含
迭代算法
(H, η) -monotone operator
resolvent operator technique
operator inclusion
iterative algorithm