期刊文献+

贝叶斯概率图像分割中混合模型参数高效计算的研究 被引量:1

Study on Effective Computation of Mixture Model Parameters for Bayesian Probabilistic Image Automatic Segment
下载PDF
导出
摘要 1,引言 图像分割的目的是将图像划分为一些互不重叠的区域,这是计算机视觉中的一个重要研究领域,也是图像理解的基础.在众多的图像分割技术中[1],特征空间聚类可以说是最常用的方法之一.通常用一确定的特征表征同一分割区域的像素.这些特征被量化成特征变量,同一分割区域的像素的特征变量基本上有类似的数值,不同分割区域的像素特征变量数值不同.在实施图像分割时,首先在特征空间把特征变量聚类,然后把特征空间的每一点映射回到图像空间的像素. When image segmentation is treated as a problem of clustering pixels, statistical finite mixture model can be used to classify image samples. With estimated mixture model parameters, we can use some Information Theoretical Criteria to determine how many regions should be segmented on a given image without a priori knowledge to conduct automatic image segmentation. In this paper, we consider the problem in practical implementing segmentation based on mixture models and suggest combining several techniques such as data reduction. Competitive Learning and variant EM algorithm to effectively estimate mixture parameters and reduce intensive computation task. The combined technique is of significance for automatic image segmentation in real-time or near real-time applications.
作者 郭平
出处 《计算机科学》 CSCD 北大核心 2002年第8期101-103,共3页 Computer Science
关键词 图像分割 混合模型参数 高效计算 贝叶斯概率 计算机视觉 图像处理 图像理解 Automatic image segmentation, Region number determination, Finite mixture model, Data reduction, EM .algorithm
  • 相关文献

参考文献17

  • 1Fu K S,Mui J K. A survey on image segmentation. Pattern Recog nition, 1981,13:3~16 被引量:1
  • 2Ahalt S C,et al. Competitive learning algorithms for vector quanti zation. Neural Networks, 1990, 3:277~290 被引量:1
  • 3Scheunders P,Backer S D. High-dimensional clustering using fre quency sensitive competitive learning. Pattern Recognition, 1999, 32:193~202 被引量:1
  • 4Dempster A P,Laird N M,Rubin D B. Maximum-likelihood from incomplete data via the EM algorithm. J. Royal Statist. Society, 1977, B39:1~38 被引量:1
  • 5Redner R A,Walker H F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 1984,26:195~239 被引量:1
  • 6Santago P,Gage H D. Statistical models of partial volume effect. IEEE Trans. Image Processing, 1995,4(11): 1531~1540 被引量:1
  • 7Sanjay-Gopal S, Hebert T J. Bayesian Pixel Classification Using Spatially Variant Finite Mixtures and the Generalized EM algo rithm. IEEE trans. Image Processing, 1998,7(7): 1014~1028 被引量:1
  • 8Guo P,Cheung C C,Xu L. Region Number Determination in Auto matic Image Segmentation Based on BKYY Model Selection Criterion. In: Proc. of 1999 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, 1999. 743~746 被引量:1
  • 9Guo,P Lyu M R. A Study on Color Space Selection for Determin ing Image Segmentation Region Number. In: Proc. of the 2000 Intl. Conf. on Artificial Intelligence , 2000.1127~ 1132 被引量:1
  • 10Akaike H. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 1974, AC- 19: 716 ~ 723 被引量:1

同被引文献30

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部