期刊文献+

EM算法的模糊化策略及其在遥感影像分类中的应用

A Fuzzy Strategy of the Expectation-Maximization Algorithm and Its Application to Remote-Sensing Image Classification
下载PDF
导出
摘要 遥感影像的统计分类中,通常都将像点特征的集合视为概率密度函数的混合分布,EM算法是求解这种混合模型参数的一个常用方法。但EM算法在给定合适初值的情况下,对训练数据中的噪声非常敏感,这将严重影响算法的运行效率和求取参数的精度。为了解决这个问题,本文提出了EM算法的模糊化策略,以此来减少噪声在参数学习过程中的影响。对遥感影像的分类实验表明,经过模糊化的EM算法能够更好地完成影像数据的分类。 Among the statistical classification methods of Remote-Sensing images,the distribution of pixel feature sets was always viewed as a mixture of the distributions with different density functions,and the Expectation-Maximization algorithm was one of the most frequently used methods to estimate the parameters of the mixture models.But with appropriate initial parameters,it is very sensitive to classification noises,which would probably slow down the running speed and reduce the accuracy of its results.On this point,a fuzzy strategy of this algorithm was proposed in order to depress the negative influences.The classification experiment on the Remote-Sensing image shows the better characters of our algorithm.
出处 《安阳师范学院学报》 2012年第2期34-37,共4页 Journal of Anyang Normal University
基金 国家自然科学基金项目(41001251)
关键词 EM 混合模型 遥感影像 模糊化策略 分类 Expectation-Maximization mixture model Remote-Sensing images fuzzy strategy classification
  • 相关文献

参考文献8

  • 1Hsieh P, Landgrebe D.A.. Classification of high di- mensional data[ D]. West Lafayette: School of Electri- cal and Computer Engineering, Purdue University, 1998. 被引量:1
  • 2Dempster A. P. , Laird N. M. , Rubin D. B. , Maximum - likelihood from incomplete data via the EM algorithm. Join'hal of the Royal Statistical Society, Series B (Meth- odological), 1977,39( 1 ) :1 -38. 被引量:1
  • 3Neal R. M. , Hinton G. E.. A View of the EM Algorithm That Justifies Incremental, Sparse, and Other Variants. Boston : Kluwer Academic Publishers, 1998. 355 - 368. 被引量:1
  • 4Redner R. A. , Walker H. F.. Mixture Densities Maxi- num Likelihood and the EM Algorithm [ J ]. SIAM Re- riew, 1984,26(2) :195 -239. 被引量:1
  • 5于林森,张田文.用于图像分割的滤波EM算法[J].计算机学报,2006,29(6):928-935. 被引量:7
  • 6Dat Tran, Michael Wagner. Fuzzy Expectation - Maxi- mization Algorithm for Speech and Speaker Recognition. Fuzzy Information Processing Society. NAFIPS. 18th In- ternational Conference of the North American, 1999: 421 425. 被引量:1
  • 7杨哲海,周玉岩,朱艳,张俊.高光谱影像分类EM算法的完善[J].测绘科学技术学报,2006,23(1):36-40. 被引量:4
  • 8骆剑承,王钦敏,马江洪,周成虎,梁怡.遥感图像最大似然分类方法的EM改进算法[J].测绘学报,2002,31(3):234-239. 被引量:84

二级参考文献27

  • 1杨哲海,李之歆,韩建峰,宫大鹏.高光谱中的Hughes现象与低通滤波器的运用[J].测绘学院学报,2004,21(4):253-255. 被引量:17
  • 2[1]Hsieh P,Landgrebe D A.Classification of high dimensional data[D].West Lafayette:School of Electrical and Computer Engineering,Purdue University,1998. 被引量:1
  • 3[3]Dempster A P,Laird N M,Rubin D B.Maximum Likelihood Estimation from Incomplete Data via EM Algorithm[J].Journal of the Royal Statistics Society,Series B,1977,39(1):1-38. 被引量:1
  • 4[4]Redner R A,Walker H F.Mixture Densities Maximum Likelihood and the EM Algorithm[J].SIAM Review,1984,26(2):195-239. 被引量:1
  • 5[7]Tadjudin S,Landgrebe D A.Robust Parameter Estimation For Mixture Model[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(1):439-445. 被引量:1
  • 6MCLACHLAN G J, BASFORD K E. Mixture Models: Inference and Applications to Clustering [M]. New York: Marcel Dekker, 1988. 被引量:1
  • 7RICHARDS J A, JIA X. Remote Sensing Digital Image Analysis: An Introduction[M]. Berlin:Springer, 1999. 被引量:1
  • 8STEIN A, MEER F, GORTE B. Spatial Statistics for Remote Sensing [M]. New York:Kluwer Academic Publishers, 1999. 被引量:1
  • 9DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum Likelihood Estimation from Incomplete Data via EM Algorithm [J]. J R Statist Soc, 1977, (B39):1-38. 被引量:1
  • 10REDNER R A, WALKER H F. Mixture Densities, Maximum Likelihood and the EM Algorithm [J]. SIAM Review, 1984, 26(2):195-239. 被引量:1

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部