期刊文献+

基于非稳态随机过程的近红外反射率鲁棒估计算法

Nonstationary stochastic process-based robust estimation algorithm of near-infrared albedo
原文传递
导出
摘要 反射率估计在计算机视觉、计算机图形学等领域具有重要作用.为了精确获取反射率,提出一种基于非稳态随机过程的近红外反射率鲁棒估计算法(RENA).该算法以Kinect二代传感器采集结果计算初始反射率,并建立反射率加性噪声模型,同时提出光照度鲁棒估计的概念,简化反射率图像非稳态随机过程模型.实验表明, RENA算法的反射率估计结果优于其他去噪算法,适用于室内场景的反射率图像高精度估计. Albedo estimation plays an important role in many areas such as computer vision,computer graphics etc.A robust estimation algorithm of near-infrared albedo(RENA)based on nonstationary stochastic process is proposed in order to obtain albedo with high quality.This algorithm takes Kinect one as input and establishes an additive noise model of albedo.Simultaneously,the concept of robust shading estimation is proposed to simplify the nonstationary stochastic process model of albedo.Experiments show that estimation results of the proposed algorithm are better than other denoising algorithms,and it is suitable for high precision estimation of albedo images in indoor scenes.
作者 房卓群 于晓升 贾同 吴成东 李永强 许茗 FANG Zhuo-qun;YU Xiao-sheng;JIA Tong;WU Cheng-dong;LI Yong-qiang;XU Ming(College of Information Science and Engineering,Northeastern University,Shenyang 110004,China;Faculty of Robot Science and Engineering,Northeastern University,Shenyang 110004,China)
出处 《控制与决策》 EI CSCD 北大核心 2019年第6期1151-1159,共9页 Control and Decision
基金 国家自然科学基金项目(61701101 61603080 U1613214 U1713216) 国家机器人重点专项项目(2017YFB1300900) 中央高校基本科研业务费项目(N170402008 N172603001 N172604004) 沈阳市科研基金项目(17-87-0-00)
关键词 近红外光 反射率 鲁棒估计 随机过程 深度图像 红外图像 near infrared albedo robust estimation stochastic process depth image infrared image
  • 相关文献

参考文献3

二级参考文献25

  • 1杨新军,王肇圻,母国光,傅汝廉.偏心和倾斜光学系统的像差特性[J].光子学报,2005,34(11):1658-1662. 被引量:35
  • 2金小刚,鲍虎军,彭群生.计算机动画技术综述[J].软件学报,1997,8(4):241-251. 被引量:58
  • 3张满囤,李智,吴鸿涛.表情动画技术和应用综述[J].河北工业大学学报,2007,36(5):89-94. 被引量:3
  • 4Bartolacci G, Pelletier P, Tessier J, et al. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes-Part I: Flotation control based on froth textural characteristics[J]. Minerals Engineering, 2006, 19(6/7/8): 734-747. 被引量:1
  • 5Yang C H, Xu C H, Gui W H, et al. Application of highlight removal and multivariate image analysis to color measurement of flotation bubble images[J]. Int J of Imaging Systems and Technology, 2009, 19(4): 316-322. 被引量:1
  • 6Buades A, Coil B, Morel J M. A review of Image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530. 被引量:1
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455. 被引量:1
  • 8Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. J of Amer Statist Assoc, 1995, 90(432): 1200-1224. 被引量:1
  • 9Hashemi M. Adaptive noise variance estimation in BayesShrink[J]. IEEE Signal Processing Letters, 2010, 17(1): 12-15. 被引量:1
  • 10Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Trans on Image Processing, 2003, 12(11): 1338- 1351. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部