期刊文献+

一种改进型脉冲耦合神经网络及其图像分割 被引量:4

Image Segmentation Based on a Modified Pulse Coupled Neural Network
下载PDF
导出
摘要 文章结合人类视觉系统(HVS)对图像各个区域敏感度不同这一特性,对通常的脉冲耦合神经网络模型(PC-NN--PulseCoupledNeuralNetwork)进行了改进,分析了改进模型的特性及其参数优化原理,提出了一种基于这种改进PCNN的图像分割算法。该算法可根据像素周边区域的灰度梯度大小发放不同值的脉冲,从而自适应地将图像分为多个不同等级的高低信息区域,较好地仿真了人类视觉系统特性。并将该算法应用于图像压缩,在压缩比和重建图像主观视觉感知质量上均达到了较好的性能。 Based on the property of Human Vision System(HVS)that human eye's sensitivity to an image varies with different regions of an image where different regions correspond to different informative area of the image,Pulse Coupled Neural Network(PCNN)model is modified for image segmentation.The modified PCNN stimulated by an input image has outputs of pulses with many pulse values other than only two according to the local intensity variation of pixels in the put image.This results in segmentation of the image with respect to the local information delivered by the image.The proposed algorithm is applied to image compression and performs well in both compression rate and subjective percep-tual quality of the reconstructed image.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第8期7-8,44,共3页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60071026) 部委预研跨行业基金资助项目(编号:00J1.4.4.DZ0106) 信息处理与智能控制教育部重点实验室开放基金资助项目(编号:TKLJ0005)
关键词 脉冲耦合神经网络 图像分割 图像信息 图像压缩 Pulse-Coupled Neural Networks,Image Segmentation,Image Information,Image compression
  • 相关文献

参考文献1

二级参考文献4

共引文献7

同被引文献56

  • 1杨智勇,周琪云,周定康.基于PCNN的灰度图像边缘检测方法[J].计算机工程与应用,2004,40(21):92-93. 被引量:17
  • 2姜志国,韩冬兵,谢凤英,袁天云.基于全自动显微镜的图像新技术研究[J].中国体视学与图像分析,2004,9(1):31-36. 被引量:15
  • 3[3]C C Hung.Knowledge-based image segmentation[D].Ph D dissertation.Dept of Comput Sci,1990;24(5) :34~39 被引量:1
  • 4[4]J L Johnsom,M L Padgett.PCNN Model and applications[J].IEEE 116 2005.34计算机工程与应用Trans on Neural Networks,1999; (10) :480~498 被引量:1
  • 5[5]G Kuntimad,H S Ranganath.Perfect Image Segmentation Using Pulse Coupled Neural Networks[J].IEEE Trans on nerual networks,1999;10(3) 被引量:1
  • 6[6]J M Kinser.Recent Research in Puls-Coupled Neural Networks[C].In:SPIE Areosense conf,Orlan,FL,1996 被引量:1
  • 7[9]Johnson J L,Ranganath H,Kuntimad G et al.Pulse coupled neural network[C].In:Omidvar 0 and Dayhoff J ed.Neural Networks and Pattern Recognition,San Diego:CA,Academicpp,1998 被引量:1
  • 8[12]J L Johnson,D Ritter.Observation of Periodic Waves in a Pulse Coupled Neural Network[J].Optics Letters,1993 ;18 :1253 被引量:1
  • 9[14]Li guo hua,Zhang yong zhong.Machine failure diagnoisis[M].Beijing:Chemistry Industry Press,1999:30~39 被引量:1
  • 10[17]Kohler R A.segmention system based on thresholding[J].Computer vision,graphics and image processing,1981; 15(6) :319~324 被引量:1

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部