期刊文献+

基于改进型脉冲耦合神经网络的混沌相态分类方法 被引量:1

Chaotic Phase State Classification Based on an Improved Pulse Coupled Neural Network
下载PDF
导出
摘要 混沌相态分类是利用混沌系统检测微弱信号的关键步骤.提出一种基于改进型脉冲耦合神经网络的混沌相态分类方法.利用该网络模拟哺乳动物视觉皮层神经细胞活动的特点,提取混沌系统输出相态图的结构特征,并应用均值残差算法进行特征信息降维,进而实现对系统混沌态与周期态的实时判别.以Lyapunov特性指数方法作为评价准则,分别使用正弦信号和标准ECG信号对所提方法进行检验,实验结果表明,所提方法可以快速、准确地对不同的混沌相态进行分类. Chaotic phase state classification is a key step in utilizing chaotic systems to detect weak signals.A chaotic phase state classification method based on an improved pulse coupled neural network(PCNN) was proposed.The movement characteristics of mammalian visual cortical neurons were simulated with improved PCNN,while outputting the structural characteristics of a phase state diagram of a chaotic system.Dimensions of these characteristics were reduced using average residual error to yield real-time classification for chaotic/periodic states of the system.Sinusoidal and ECG signals were used to verify the proposed method using Lyapunov characteristic exponents.Results indicate that the method can quickly and accurately classify different chaotic phase states.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期485-488,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50477015) 中央高校基本科研业务费专项资金资助项目(N100604006)
关键词 混沌相态分类 改进型脉冲耦合神经网络 微弱信号检测 特征提取 心电信号 chaotic phase state classification improved pulse coupled neural network weak signal detection feature extraction ECG signal
  • 相关文献

参考文献10

  • 1Wang G Y, Chen D J, Lin J Y. The application of chaotic oscillators to weak signal detection [J]. Industrial Electronicsourna, 1999,46 (2) : 440 - 444. 被引量:1
  • 2Logunov M Y, Butkovskii O Y. Mixing and Lyapunov exponents of chaotic systems[J ]. Technical Physics, 2008, 53(8) : 959 - 965. 被引量:1
  • 3Kovaleva A. Stability and control of random rocking motion of a muhidimensionai structure: the Melnikov approach[J]. Nonlinear Dynamics, 2010,59(2) :309- 317. 被引量:1
  • 4Wang Z B, Ma Y D, Xu G Z. A novel method of iris feature extraction based on the ICM [ C ]//Proceeding of the 2006 IEEE International Conference on Information Acquisition. Shandong, 2006:814 - 818. 被引量:1
  • 5姚畅,陈后金,李居朋.改进型脉冲耦合神经网络在图像处理中的动态行为分析[J].自动化学报,2008,34(10):1291-1297. 被引量:13
  • 6Wang G Y, He S L. A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators [J]. Circuits and Systems, 2003,50(7) :945 - 953. 被引量:1
  • 7Peddada D, Devitt S. Least average residual algorithm for tracking the motion of Arctic sea ice[J]. Geoscience and Remote Sensing, 2002,34(4) : 915 - 926. 被引量:1
  • 8Liang Y, Marquez H J. Robust gain scheduling synchronization method for quadratic chaotic systems with channel time delay[J]. Circuits and System, 2009,56(3) : 604 - 615. 被引量:1
  • 9侯荣涛,褚祥志,任立义,闻邦椿.基于Lyapunov指数-相轨迹的发电机组故障诊断[J].东北大学学报(自然科学版),2004,25(5):478-481. 被引量:11
  • 10Moody G B, Mark R G. The impact of the MIT-BIH arrhythmia database [J]. Medicine and Biology, 2002, 20 (3) :45 - 50. 被引量:1

二级参考文献23

  • 1顾晓东,张立明,余道衡.一定条件下PCNN动态行为的分析[J].计算机工程与应用,2004,40(19):6-8. 被引量:6
  • 2毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法[J].电子学报,2005,33(4):647-650. 被引量:58
  • 3马义德,刘映杰,夏春水,钱志柏.基于改进模型的PCNN动态行为的实验研究[J].中国生物医学工程学报,2006,25(5):632-636. 被引量:3
  • 4Shin K, Hanmmond J K. The instantaneous Lyapunov exponent and its application to chaotic dynamical systems [ J ]. Journal of Sound and Vibration, 1998,218 (3): 389- 403. 被引量:1
  • 5Eckmann J P, Kamphorst S O, Ruelle D, et al. Lyapunov exponents from time series[ J ]. Phys Rev A, 1986,34 (6):4971 - 4979. 被引量:1
  • 6Wolf A J, Swift B, Swinney H L, et al. Determining Lyapunov exponents from a time series [ J ]. Physica D,1985,16(3) :285 - 317. 被引量:2
  • 7Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunov exponents in from small data set[J]. Physica D, 1993,65(1 -2):117 - 134. 被引量:2
  • 8Brown R, Bryant P, Abarbanel D I. Computing the Lyapunov spectrum of a dynamical system from an observed time series[ J ]. Physical Review A, 1991,43 ( 3 ): 2787 -2806. 被引量:3
  • 9Hou R T, Sun L Y, Ren L Y, et al. The diagnosis of a generator set basedon modern nonlinear theory [ A ].ICVE'2002[ C]. Nanjing: China Aviation Industry Press,2002.651 - 654. 被引量:2
  • 10Eckhorn R, Reitboeck H J, Arndt M, Dicke P. Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Computation, 1990, 2(3): 293-307 被引量:1

共引文献22

同被引文献11

  • 1SEGUNDO J P, MARTINEZ O D. Dynamic and static hysteresis in crayfish stretch receptors [J]. Biol Cybern, 1985,52 (5): 291-296. 被引量:1
  • 2BHARITKAR S, MENDEL J M. The hysteretic Hopfield neural network [J]. IEEE Trans Neural Networks, 2000, 11 (4): 879-888. 被引量:1
  • 3XIA G, TANG Z, LI Y, et al. A binary Hopfield neural network with hysteresis for large crossbar packet-switches [J]. Neuroeomputing, 2005,67( 13 ):417-425. 被引量:1
  • 4LI C T, YAN Y H. A neural networks model for hysteresis non- linearity[J]. Sensors Actuators Phys : A, 2004, 112( 1 ) : 49-54. 被引量:1
  • 5TAKEFUJI Y, LEE K C. An hysteresis binary neuron : A model suppressing the oscillatory behavior of neural dynamics[J]. Biol Cybem, 1991,64 (5): 353-356. 被引量:1
  • 6MA Jinwen. The asymptotic memory capacity of the generalized Hopfield network [J]. Neural Networks, 1999,12 (9) : 1207 - 1212. 被引量:1
  • 7STORKEY A J, VALABREGUE R. The basins of attraction of a new hopfield learning rule[J]. Neural Networks, 1999,12 (6): 869-876. 被引量:1
  • 8MARZBAN Caren, VISWANATHAN Raju. Stochastic neural networks with the weighted Hebb rule [J]. Physics Letters: A, 1994, 191( 1/2):127-133. 被引量:1
  • 9KITAJIMA T, HARA K. A generalized Hebbian rule for activity-dependent synaptic modifications [J]. Neural Networks, 2000, 13 (4/5): 445-454. 被引量:1
  • 10张栋,徐鉴.超混沌时滞神经网络的同步及其仿真[J].系统仿真学报,2010,22(3):626-629. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部