摘要
设f(s) =∑+ ∞n=0 bneλns 是复平面上的无限级Dirichlet级数 .应用熊庆来的型函数U(s)定义了它的级与下级 ,讨论了f(s)的增长性及正规增长性 .特别是 ,首次应用Newton多边形得到它的下级与它系数间的关系 .
Let f(s)=∑ +∞ n=0b ne λ ns be a Dirichlet series of infinite order on the complex plane. Its order and low order by the type-function U(s) of Hiong Kin-lai are defined and the growth and normal growth of f(s) are discussed. Specifically, the relations between its low order and its coefficients by the Newton polygon are obtained.
出处
《华南师范大学学报(自然科学版)》
CAS
2003年第1期1-8,共8页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目 (199710 2 9)
广东省自然科学基金资助项目 (990 44 4)