期刊文献+

基于改进果蝇优化算法优化RVM的电机轴承故障诊断 被引量:7

MOTOR BEARING FAULT DIAGNOSIS BASED ON RELEVANCE VECTOR MACHINE OPTIMIZE BY IMPROVED FRUIT FLY OPTIMIZATION ALGORITHM
下载PDF
导出
摘要 针对相关向量机(RVM)在电机轴承故障识别中的性能受参数选择影响较大的问题,提出了基于反向认知果蝇优化算法(RCFOA)优化RVM的电机轴承故障诊断方法。为提高FOA算法的寻优能力,引入反向学习策略,对原始果蝇优化算法进行了改进。利用RCFOA进行RVM参数的优化,可以有效地提高RVM的分类性能。电机轴承不同类型、不同程度故障诊断的实例表明,RCFOA算法能够获得更优的参数,提高了RVM的故障诊断准确率,相比于其他一些方法更有优势,可有效应用于故障诊断。 Aiming at the fact that the fault diagnosis performance of relevance vector machine(RVM)in motor bearing highly depends on the parameters selection,a motor bearing fault diagnosis method based on RVM optimized by fruit fly optimization algorithm with reverse cognition(RCFOA)was proposed.In order to improve search ability of FOA,reverse cognition strategy was introduced and improved the original FOA algorithm.Use the RCFOA to optimize RVM parameters can effectively improve the classification performance of RVM.Different fault type and different fault degree of motor bearing fault diagnosis experiment results show that the RCFOA can obtain better parameter when compared with some other methods,improved the fault diagnosis accuracy of RVM and can applied to fault diagnosis efficiently.
作者 王汉章 WANG HanZhang(Department of Locomotive and Rolling Stock,Baotou Railway Vocation&Technical College,Baotou 014060,China)
出处 《机械强度》 CAS CSCD 北大核心 2019年第4期814-820,共7页 Journal of Mechanical Strength
关键词 果蝇优化算法 反向认知 相关向量机 故障诊断 轴承 Fruit fly optimization algorithm Reverse cognition Relevance vector machine Fault diagnosis Bearing
  • 相关文献

参考文献12

二级参考文献125

共引文献513

同被引文献85

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部