期刊文献+

人力短臂离心机的研制与应用研究 被引量:18

Development and Application of Self-powered Short Arm Human Centrifuge.
下载PDF
导出
摘要 目的研究一种人力短臂离心机并对其应用进行实验研究。方法人力短臂离心机由人工动力部分、可调阻力制动部分、工作转臂、支承装置及集流环装置等部分组成。它通过人工动力部分的驱动 ,使工作转臂绕支承装置作圆周运动 ,从而达到人工重力的目的。体力负荷大小可通过可调阻力制动部分来调节。G值大小由工作转臂转动速度决定。 9名健康男性青年利用人力短臂离心机进行训练 ,转速为 30~ 34r·min- 1 ,持续时间为 5min ,1次 /d ,连续训练 7d。测量心脏泵血功能的变化。结果人力短臂离心机训练 3d后 ,心率 (HR)显著降低 (P <0 .0 5 ) ,左室射血时间 (LVET)显著延长 (P <0 .0 1 ) ;训练7d后 ,HR进一步降低 (P <0 .0 1 ) ,LVET显著延长 (P <0 .0 5 ) ,每搏量显著增加 (P <0 .0 5 )。结论该人力短臂离心机集人工重力与体育锻炼于一身 ,安全可靠 ,造价较低 ,连续训练 7d后可明显改善心脏泵血功能 。 Objective To present the development and application of a self powered short arm human centrifuge. Method Self powered short arm human centrifuge consisted of human power, adjustable resistance trig, short arm and supporting construction parts. It was driven by human power. The short arm turned around the supporting part so artificial gravity is produced. The physical load can be adjusted by the adjustable resistance part. G level depends on the rotative velocity of the central shaft. Nine healthy male volunteers received self powered short arm human centrifuge training for 5 min per day with rotative velocity of 30~34 r·min -1 for 7 d. Cardiac pumping function was measured before and after training. Result Heart rate (HR) decreased significantly while left ventricular ejection time (LVET) increased significantly after 3 d training, and HR and LVET changed further after 7 d training. Stroke volume increased significantly only after 7 d training. Conclusion Self powered short arm human centrifuge combines artificial gravity and exercise and included other advantages of safety and economy of construction. Cardiac pumping function could be improved by 7 d training. It may be used for anti G physiological training or as a countermeasure to counteract the effect of microgravity.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2003年第1期10-13,共4页 Space Medicine & Medical Engineering
基金 国家教育部留学回国人员科研启动基金
关键词 应用 人力离心机 短臂 心血管功能 研制 self powered human centrifuge short arm cardiovascular function development(technology)
  • 相关文献

参考文献7

  • 1[1]Gillingham KK, Fosdick JP. High-G training for fighter aircrew[J]. Aviat Space Environ Med, 1988, 59(1): 12-19. 被引量:1
  • 2[3]Guell A, Braak L, Traon AP, et al. Cardiovascular adaptation during simulated microgravity: lower body negative pressure to counter orthostatic hypotension[J]. Aviat Space Environ Med, 1991, 62(4): 331-335. 被引量:1
  • 3[6]Greenleaf JE, Vernikos J, Wade CE, et al. Effect of leg exercise training on vascular volumes during 30 d of 6 degrees head-down bed rest[J]. J Appl Physiol,1992,72: 1887-1894. 被引量:1
  • 4[8]Maillet, A, Fagette S, Allevard AM,et al. Cardiovascular and hormonal response during a 4-week head-down tilt with and without exercise and LBNP countermeasures[J]. J Gravity Physiol, 1996,3(10): 37-48. 被引量:1
  • 5[9]David C, Mctaggart WG, Scott C. Progress in the development of an artificial gravity simulator (AGS)[J]. Physiologist, 1991, 34(1 suppl): s224-225. 被引量:1
  • 6[10]Shulzhenko EB, Vil-Viliams IF. Short radius centrifuge as a method in long-term space flights. Physiologist, 1992, 35(1): s122-125. 被引量:1
  • 7[11]Kreitenberg A, Baldwin KM, Babian JP, et al. The "space cycle" self powered human centrifuge: a proposed countermeasure for prolonged human spaceflight[J]. Aviat Space Environ Med, 1998, 69(1): 66-72. 被引量:1

同被引文献134

引证文献18

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部