期刊文献+

基于B-list的最大频繁项集挖掘算法 被引量:4

Maximal frequent itemset mining algorithm based on B-list
下载PDF
导出
摘要 针对现有的最大频繁项集挖掘算法挖掘时间过长、内存消耗较大的问题,提出了一种基于构造链表B-list的最大频繁项集挖掘算法BMFI。该算法利用B-list数据结构来挖掘频繁项集,并采用全序搜索树作为搜索空间,然后采用父等价剪枝技术来缩小搜索空间;最后再结合基于MFI-tree的投影策略实现超集检测来提高算法的效率。实验结果表明,BMFI算法在时间效率与空间效率方面均优于FPMAX与MFIN算法。该算法在稠密数据集与稀疏数据集中进行最大频繁项集挖掘时均有良好的效果。 In order to solve the problems that existing in the maximal frequent itemset mining algorithms,such as the mining time is too long and the memory consumption is too large,this paper presented a maximal frequent itemset mining algorithm BMFI which employed B-list to mining frequent itemsets and employed the whole sequence search tree as the search space.Then,it used the parent equivalence pruning technique to reduce the search space. Finally,which combined with the MFItree-based projection strategy to achieve superset detection to improve the efficiency of the algorithm. The experimental results show that the performance of BMFI algorithm is superior to FPMAX algorithm and MFIN algorithm in terms of time efficiency and spatial efficiency. The proposed algorithm has good performance when mining the maximal frequent itemset in dense data set and sparse data set.
作者 张昌 文凯 郑云俊 Zhang Chang;Wen Kai;Zheng Yunjun(Institute of Applied Communication Technology,School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Information Technology Designing Co. Ltd. ,Chongqing 401121,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第2期351-354,共4页 Application Research of Computers
关键词 最大频繁项集挖掘 深度优先搜索 剪枝技术 超集检测 maximal frequent itemsets mining depth-first search pruning techniques superset detection
  • 相关文献

参考文献3

二级参考文献36

  • 1眭俊明,姜远,周志华.基于频繁项集挖掘的贝叶斯分类算法[J].计算机研究与发展,2007,44(8):1293-1300. 被引量:12
  • 2HaHan J W, Pei J, Yin Y W. Mining frequent itemsets without candidate generation. In: The 2000 ACM SIGMOD International Conference on Management of data (SIGMOD’00), New York, 2000. 1-12. 被引量:1
  • 3AgAgrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: The 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD’93), Washington, 1993. 207-216. 被引量:1
  • 4HaHan J, Cheng H, Xin D, et al. Frequent itemset mining: current status and future directions. Data Min Knowl Discov,2007, 15: 55-86. 被引量:1
  • 5BaBaralis E, Cerquitelli T, Chiusano S. IMine: index support for item set mining. IEEE TKDE J, 2009, 21: 493-506. 被引量:1
  • 6ZaZaki M J, Gouda K. Fast vertical mining using diffsets, In: The 9th ACM SIGKDD International Conference on. Knowledge Discovery and Data Mining (SIGKDD’03), Washington, 2003. 326-335. 被引量:1
  • 7DeDeng Z H, Wang Z H. A new fast vertical method for mining frequent itemsets. Int J Comput Intell Syst, 2010, 3:733-744. 被引量:1
  • 8AgAgrawal R, Srikant R. Fast algorithm for mining Association rules. In: The 20th International Conference on Very Large Data Bases (VLDB’94), Santiago de Chile, 1994. 487-499. 被引量:1
  • 9SaSavasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases. In: The21th International Conference on Very Large Data Bases (VLDB’95), Zurich, 1995. 432-443. 被引量:1
  • 10ShShenoy P, Haritsa J R, Sundarshan S, et al. Turbo-charging vertical mining of large databases. In: ACM International Conference on Management of Data and Symposium on Principles of Database Systems (SIGMOD’00), Dallas, 2000.22-33. 被引量:1

共引文献29

同被引文献24

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部