期刊文献+

基于色彩信息的自适应进化点云拼接算法

Point cloud registration based on self-adaptive evolutionary optimization and color information
下载PDF
导出
摘要 针对现有进化点云拼接算法未使用点云色彩信息的局限性,提出一种基于色彩信息的自适应进化点云拼接算法。使用随机采样与色彩特征点相结合的方式对输入点云进行采样,通过最小化包含色彩约束的点对距离中值建立目标函数,利用自适应进化算法求解两片点云间的最优空间变换,实现点云的有效拼接。对四幅彩色点云进行拼接实验,结果表明,与仅使用空间信息的自适应进化点云拼接算法和其他两种较新的进化拼接算法相比,所提算法在保证同等拼接精度的情况下能够有效缩短拼接时间。 Traditional evolutionary point cloud registration methods often not using the color information in the models. To overcome the defect,this paper introduced a point cloud registration method based on self-adaptive evolutionary optimization algorithm and color information. It subsampled the input point clouds by extracting the color feature points and randomly chose points,it utilized the median of all pairs of color constrained points as the object function. At last,it used the self-adaptive evolutionary optimization algorithm to get optimal solution. The registration experiments on four colorized point clouds show that,compared with the evolutionary point cloud registration methods only spatial information use in and two state-of-the-art registration methods,the method significantly shorten the processing time while achieving similar registration precision.
作者 邹力 葛宝臻 陈雷 Zou Li;Ge Baozhen;Chen Lei (School of Precision Instruments & Opto-Electronics Engineering,Tianjin University,Tianjin 300072,China;Key Laboratory of Opto-Electronics Information & Technical Science of Ministry of Education,Tianjin University,Tianjin 300072,China;School of Information Engineering,Tianjin University of Commerce,Tianjin 300134,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第1期303-307,共5页 Application Research of Computers
基金 国家自然科学基金重点资助项目(61535008)
关键词 彩色点云拼接 自适应进化算法 特征点提取 color point cloud registration self-adaptive evolution optimization algorithm feature points extraction
  • 相关文献

参考文献3

二级参考文献20

  • 1CHOW C K, TSUI H T, LEE T. Surface registration using a dynamic genetic algorithm [ J]. Pattern Recognition, 2004,37 ( 1 ) : 105- 117. 被引量:1
  • 2SILVA L,BELLON 0 R P,BOYER K L. Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(5):762-776. 被引量:1
  • 3BESL P J, McKAY N D. A method for registration of 3D shapes[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(2):239-256. 被引量:1
  • 4CHEN Y, MEDIONI G. Object modeling by registration of multiple range images [ C ]//Proc of IEEE International Conference on Robotics and Automation. Sacramento: [ s. n. ], 1991:2724-2729. 被引量:1
  • 5RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm[ C]//Proc of the 3rd International Conference on 3D Digital Imaging and Modeling. Quebec : IEEE, 2001 : 145-152. 被引量:1
  • 6BLAIS G, LEVINE M. Registering muhi-view range data to create 3D computer objects[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(8) :820-824. 被引量:1
  • 7ROBERTSON C, FISHER R B. Parallel evolutionary registration of range data [ J ]. Computer Vision and Image Understanding, 2002,87( 1 ) :39-50. 被引量:1
  • 8GELFAND N, IKEMOTO L, RUSINKIEWICZ S, et al. Geometrically stable sampling for the ICP algorithm[ C]//Proc of the 4th International Conference on 3D Digital Imaging and Modeling. Banff: [ s. n. ], 2003:260-267. 被引量:1
  • 9PULLI K. Multi-view registration for large data sets [ C ]//Proc of the 2nd International Conference on 3D Digital Imaging and Modeling. Ottawa: IEEE, 1999:160-168. 被引量:1
  • 10DELLART F, SEITZ S, THORPE C, et al. Structure from motion without correspondence [ C ]//Proc of IEEE Computer Society Confe- rence on Computer Vision and Pattern Recognition. 2000:557-564. 被引量:1

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部