期刊文献+

基于高斯混合模型聚类的Kinect深度数据分割 被引量:5

KINECT DEPTH DATA SEGMENTATION BASED ON GAUSSIAN MIXTURE MODEL CLUSTERING
下载PDF
导出
摘要 基于深度图像的室内场景理解是计算机视觉领域中的前沿问题。针对三维室内场景中平面较多的特性,提出一种基于高斯混合模型聚类的深度数据分割方法,实现对场景数据的平面提取。首先将Kinect获取的深度图像数据转换为离散三维数据点云,并对点云数据作去噪和采样处理;在此基础上计算所有点的法向量,利用高斯混合模型对整个三维点云的法向集合聚类,然后利用随机抽样一致性算法对各个聚类进行平面拟合,由每个聚类得到若干平面,最终把整个点云数据分割为一些平面的集合。实验结果表明,该方法得到的分割区域边界准确,分割质量较高。提取出的平面集合为以后的室内对象识别和场景理解工作奠定了较好的基础。 Indoor scene understanding based on depth image is a cutting-edge issue in the field of three-dimensional computer vision.In 3D indoor scenes the planes are quite many, taking this feature into account, we present a Gauss mixture model clustering-based depth data segmentation method, and realise planes extraction from scene data.First, the method converts the depth image data acquired by Kinect into discrete three-dimensional data point cloud, and applies denoising and downsampling treatment on the point cloud data; On this basis, it calculates the normal vectors of all points in entire point cloud, and clusters the normal collection of entire 3D point cloud using Gaussian mixture model;next, it carries out the plane fitting on each clustering with random sampling consensus ( RANSAC) algorithm, gets a couple of planes from each clustering, and eventually segments the whole point cloud data into some sets of planes.Experimental results show that the divided regions using this method have accurate boundaries and the segmentation quality is above normal.The sets of planes extracted from the previous operations will lay a good foundation for the following indoor object recognition and scene understanding.
作者 杜廷伟 刘波
出处 《计算机应用与软件》 CSCD 北大核心 2014年第12期245-248,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61005001) 北京市教委项目(KM200810005003)
关键词 室内场景理解 深度数据分割 高斯混合模型 随机抽样一致性算法 KINECT Indoor scene understanding Depth data segmentation Gauss mixture model RANSAC algorithm Kinect
  • 相关文献

参考文献13

  • 1Introducing Kinect for Xbox 360[EB/OL].(2012)[2013-03-28].http://www.xbox.com/en-US/kinect. 被引量:1
  • 2Besl P J,Jain R C.Segmentation Through Variable Order Surface Fitting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(2):167-192. 被引量:1
  • 3Hoffman R L,Jain A K.Segmentation and classification of range images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(5):608-620. 被引量:1
  • 4Gotardo P,Bellon O.Range Image Segmentation Into Planar and Quadric Surfaces Using an Improved Robust Estimator and Genetic Algorithm[J].IEEE Transactions on System,Man,Cybernetics B,2004,34(6):2303-2316. 被引量:1
  • 5Angel D S.Surface model generation from range images of industrial environments[C]//Proceedings of the 2nd International Symposium on3DPVT,Barcelona,2004:868-871. 被引量:1
  • 6Mirante E,Georgiev M,Gotchev A.A fast image segmentation algorithm using color and depth map[C]//3DTV Conference:The True Vision-Capture,Transmission and Display of 3D Video(3DTVCON),2011:1-4. 被引量:1
  • 7陈晓明,蒋乐天,应忍冬.基于Kinect深度信息的实时三维重建和滤波算法研究[J].计算机应用研究,2013,30(4):1216-1218. 被引量:42
  • 8Konolige K,Mihelich P.Technical aspects of the Kinect device and its calibration[EB/OL].(2012)[2012-12-27].http://www.ros.org/wiki/kinect_calibration/technical. 被引量:1
  • 9Point Cloud Library(PCL)[EB/OL].(2012)[2012-12-08].http://pointclouds.org/documentation/tutorials/. 被引量:1
  • 10Fraley C,Raftery AE.How many clusters?Which clustering methods?Answers via model-based cluster analysis[J].Computer Journal,1998,41(8):578-588. 被引量:1

二级参考文献10

  • 1DELLART F, SEITZ S, THORPE C, et al. Structure from motion without correspondence [ C ]//Proc of IEEE Computer Society Confe- rence on Computer Vision and Pattern Recognition. 2000:557-564. 被引量:1
  • 2SE1TZ S M, CURLESS B, D1EBEL J, e! al. A comparison and eva- luation of muhi-view stereo reconstrnetion algorithms [ C ]//Proe of IEEE Conference on Computer Vision and Pattern Recognition. 2006: 519-526. 被引量:1
  • 3Introducing Kinect lbr Xhox 360[ EB/OL]. ( 2012 ) [ 2012-08- I0 ]. http ://www. xbox. conv/t:n-US/kinect. 被引量:1
  • 4PMD:vision] CamCube3.0[EB/OL]. (2012) [2012-08-10].ht- tp://www, pmdtec, conr/produets-services/pmdvisionr-cameras/pmd- visionr-camcube- 30/. 被引量:1
  • 5NEWCOMBE R, DAVISION A, IZAD1 S. KinectFusion: real-time dense surface mapping and tracking[ C ]//Proc of IEEE/ACM Inter- national Symposium on Mixed and Augmented Reality. 2011: 127- 136. 被引量:1
  • 6KONOLIGE K, MIHELICH P. Technical descriplion of Kinecl cali- bration [ EB/OL]. ( 2011 ) [ 2012-08- 10 ]. http ://www. ros. org/wi- ki/kinect_calibration/technical. 被引量:1
  • 7TOMASI C, MANDUCHI R. Bilateral filtering for gray and color ima- ges[ C ]//Proc of the 6th International Conference on Computer Vi- sion. 1998:839-846. 被引量:1
  • 8KOPF J, COHEN M F, LISCHINSKI D, et al. Joint bilateral upsam- piing[ J ]. ACM Trans on Graphics ,2007,26 ( 3 ) :96. 被引量:1
  • 9谢勤岚.结合双边滤波和多帧均值滤波的图像降噪[J].计算机工程与应用,2009,45(27):154-156. 被引量:11
  • 10杨学志,徐勇,方静,卢洁,左美霞.结合区域分割和双边滤波的图像去噪新算法[J].中国图象图形学报,2012,17(1):40-48. 被引量:33

共引文献41

同被引文献29

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部