期刊文献+

铜对草鱼及花鲢的毒性预测:基于生物配体模型 被引量:4

Predicting Copper Toxicity to Hypophthalmichthys molitrix and Ctenopharyngodon idellus Based on Biotic Ligand Model
原文传递
导出
摘要 试验配置不同胡敏酸浓度(DOC浓度为0.05、0.5、1、2、4 mg·L-1)下,分别对草鱼及花鲢进行铜的一系列96 h生物急性毒性试验,结果表明DOC浓度与LC50呈正相关关系,此与生物配体模型描述一致.利用两鱼种(Fathead minnow、Rainbow trout)的生物配体模型预测草鱼及花鲢的LC50,得出平均绝对偏差分别为591.2、157.14μg·L-1及728.18、91.24μg·L-1.在生物配体模型(biotic ligand model,BLM)铜形态分布平台下,得到草鱼及花鲢的LA50(以湿重计)依次为10.960nmol·g-1和3.978 nmol·g-1.通过校正草鱼及花鲢的LA50,得出平均绝对偏差依次为280.52μg·L-1和92.25μg·L-1,预测性能显著提高.基于所确立的LA50,通过搜集草鱼及花鲢的毒性数据,预测其LC50,得到平均绝对偏差分别为252.37μg·L-1和50.26μg·L-1,此证实基于生物配体模型的毒性预测具有一定的实用性. A series of 96 h copper acute toxicity experiments were conducted with Ctenopharyngodon idellus and Hypophthalmichthys molitrix under different concentrations of DOC [ρ(DOC) 0. 05,0. 5,1,2,4 mg·L-1]. Higher DOC resulted in a reduction of toxicity, which was in line with the concepts of the biotic ligand model ( BLM) . It was concluded that the mean absolute deviation ( MAD) of LC50 with Ctenopharyngodon idellus and Hypophthalmichthys molitrix was 591. 2, 157. 14 μg·L-1 and 728. 18, 91. 24 μg·L-1 , respectively, by the prediction of copper BLM developed for Fathead minnow and Rainbow trout. Based on speciation analysis of biotic ligand model, it was shown that LA50 values of Ctenopharyngodon idellus and Hypophthalmichthys molitrix were 10. 960 and 3. 978 nmol·g-1 , respectively. Then the MAD values became 280. 52 and 92. 25 μg·L -1 for Ctenopharyngodon idellus and Hypophthalmichthys molitrix using the normalized LA50 . Finally by searching toxicity data in literature, the MAD values on Ctenopharyngodon idellus and Hypophthalmichthys molitrix were 252. 37 and 50. 26 μg·L-1 , successively. This result verified that the toxicity prediction based on biotic ligand model was practical.
出处 《环境科学》 EI CAS CSCD 北大核心 2014年第10期3947-3951,共5页 Environmental Science
基金 国家自然科学基金项目(41303092) 国际铜协会研究项目(ENV-25686 A-02 YEAR 2013)
关键词 草鱼 花鲢 生物配体模型 预测 LA50 Ctenopharyngodon idellus Hypophthalmichthys molitrix biotic ligand model(BLM) prediction copper LA50
  • 相关文献

参考文献9

  • 1C.R Janssen,D.G Heijerick,K.A.C De Schamphelaere,H.E Allen.Environmental risk assessment of metals: tools for incorporating bioavailability[J].Environment International.2002(8) 被引量:1
  • 2GermanVillavicencio,PaolaUrrestarazu,ClaudiaCarvajal,Karel A. C.De Schamphelaere,Colin R.Janssen,Juan C.Torres,Patricio H.Rodriguez.Biotic ligand model prediction of copper toxicity to daphnids in a range of natural waters in Chile[J].Environmental Toxicology and Chemistry.2009(5) 被引量:1
  • 3Karel A.C. De Schamphelaere,Colin R. Janssen.Cross-phylum extrapolation of the Daphnia magna chronic biotic ligand model for zinc to the snail Lymnaea stagnalis and the rotifer Brachionus calyciflorus[J].Science of the Total Environment.2010(22) 被引量:1
  • 4Karel A.C. De Schamphelaere,Dagobert G. Heijerick,Colin R. Janssen.Cross-phylum comparison of a chronic biotic ligand model to predict chronic toxicity of copper to a freshwater rotifer, Brachionus calyciflorus (Pallas)[J].Ecotoxicology and Environmental Safety.2005(2) 被引量:1
  • 5周永欣,周仁珍,尹伊伟.在不同水硬度下铜对草鱼、鲢和大鳞泥鳅的急性毒性[J].暨南大学学报(自然科学与医学版),1992,13(3):62-67. 被引量:15
  • 6Maria V.Leis.Biotic Ligand Model estimation of copper bioavailability and toxicity in the Yacyretá Reservoir on the Paraná River[J].Lakes & Reservoirs: Research & Management.2008(3) 被引量:1
  • 7Takehiko I Hayashi.Applying biotic ligand models and Bayesian techniques: Ecological risk assessment of copper and nickel in Tokyo rivers[J].Integr Environ Assess Manag.2012(1) 被引量:1
  • 8张甫英,周永欣,周仁珍.两种金属和两种农药对草鱼不同发育阶段的毒性效应[J].环境科学学报.1988(01) 被引量:1
  • 9María Victoria Casares,Laura I. de Cabo,Rafael S. Seoane,Oscar E. Natale,Milagros Castro Ríos,Cristian Weigandt,Alicia F. de Iorio,Anthony DeCaprio.Measured Copper Toxicity to Cnesterodon decemmaculatus (Pisces: Poeciliidae) and Predicted by Biotic Ligand Model in Pilcomayo River Water: A Step for a Cross-Fish-Species Extrapolation[J].Journal of Toxicology.2012 被引量:1

共引文献14

同被引文献40

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部