期刊文献+

基于数据挖掘技术的油气设备预测性维护研究 被引量:7

Study on the Predictive Maintenance of Oil Gas Equipments Based on Data Mining
下载PDF
导出
摘要 随着自动化和智能化油气设备得到不断地更新和应用,设备不间断运行的可靠性与油田各个生产环节密切相关。为了解决在传统维护方式下设备因过度保养和事后维护而存在的维护成本高、利用效率低等问题,文章结合西南油气田集输管线上压缩机的日常维护场景,基于生产信息化建设所采集的大量设备状态信息,运用数据挖掘技术对压缩机工况进行分析诊断,从而实现对设备的预测性维护,以达到降本减耗、提高油气集输效率的目的。 as the automatic and intelligent oil-gas equipment are constantly updated and applied, the reliability of continuous operation of the equipmentis closely related to each production processin the oilfield.Combining with the daily maintenance scene of compressor on the gathering pipeline of Southwest Oil-Gas Filed, this paper that based on a large number of equipment status information collected in production information construction has used data mining to make an analytic diagnosis on the working condition of compressor to fulfill the predictive maintenance equipment and reduce cost, consumption, improve the oil and gas gathering and transferring efficiency, in order to solve the high maintenance cost and low utilization efficiency caused by excessive maintenance and posterior maintenance of the equipment in the traditional maintenance mode.
作者 黄飞飞
出处 《信息通信》 2016年第10期16-18,共3页 Information & Communications
关键词 大数据分析仓库 数据挖掘 预测性维护 天然气压缩机 big data analysis warehouse data mining predictive? maintenance natural gas compressor
  • 相关文献

参考文献2

二级参考文献13

  • 1李彩霞.基于Web的数据仓库技术及其在高校综合管理中的应用[J].河南农业大学学报,2006,40(3):333-337. 被引量:5
  • 2XU R,DONALD W Ⅱ.Survey of clustering algorithms[J].IEEE Transactions on Neural network,2005,16(3):645-678. 被引量:1
  • 3HERMAN C.The use of faces to represent points in K-dimensional space graphically[J].Journal of the American Statistical Association,1973,68(342):361-368. 被引量:1
  • 4ASTEL K.Classification of drinking water samples using the Chernoff's faces visualization approach[J].Polish Journal of Environmental Studies,2006,15(5):691-697. 被引量:1
  • 5SU C P,GUPTA M,WHITE P.Multivariate sensory characteristics of low and ultra-low linoleic soybean oils displayed as faces[J].Journal of the American Oil Chemists' Society,2003,80(12):1231-1235. 被引量:1
  • 6SAXENA P C,NAVANEETHAM K.Comparison of Chernoff -type face and non-graphical methods for clustering multivariate observations[J].Computational Statistics & Data Analysis,1993,15(1):63-79. 被引量:1
  • 7HAIR J E,ANDERSON R E.Multivariate data analysis[M].Prentice Hall,1998. 被引量:1
  • 8http://www.ics.uci.edu/mlearn/MLRepository.html[EB/OL]. 被引量:1
  • 9DARINKA B V,ZDENKA C K.Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids[J].Chemometrics and Intelligent Laboratory Systems,2005,75(1):31-43. 被引量:1
  • 10Inmon WH. Building the Data Warehouse. Indiana, USA : Wiley Publications, 2005. 被引量:1

共引文献12

同被引文献39

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部