期刊文献+

电路板图像分割的K均值聚类算法研究 被引量:3

Image Segmentation of Circuit Board Based on K-Means Clustering Method
下载PDF
导出
摘要 对电路板的图像进行分割,可以提取电路板中的目标物,以对电路板进行检测。文章使用K均值聚类算法完成对电路板图像的分割,针对传统的K均值聚类算法的不足,提出了使用直方图波形的有效波峰个数来确定K值的大小,并通过使用一种比传统的绝对误差的表示更简洁的表达式,达到了快速分割的目的。对一些电路板图像分割的实验结果表明,文章的方法能够根据目标物的数目有效的确定K值的大小,且比传统的K均值算法减少了运算量及计算时间。 Image segmentation is the first step for analyzing and processing image. An improved algorithm for traditional K-Means clustering method is proposed in this paper, and its application in the image segmentation of circuit board is given. First of all, the value of K is determined by the number of wave crests in histogram. Secondly, the indicators in K-Means clustering method are decreased for complex computation. Experiments results for some image of circuit board show that the improved K-Means method in this paper can effectively confirm the K value by using the number of objects in image.
作者 刘豪 潘中良
出处 《自动化与信息工程》 2009年第2期1-4,20,共5页 Automation & Information Engineering
基金 广东省自然科学基金(编号7005833) 国家自然科学基金(编号60006002)资助
关键词 电路板 K均值聚类 图像分割 目标检测 Circuit Board Means Clustering Image Segmentation Object Detection
  • 相关文献

参考文献6

  • 1Y.Q.Yu, D.A.Clausi. IRGS: Image segmentation using edge penalties and region growing[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(12): 2126-2139 被引量:1
  • 2M.Rivera, O.Ocegueda, J.Marroquin. Entropy-controlled quadratic Markov measure field models for efficient image segmentation[J]. IEEE Trans on Image Processing, 2007, 16(12): 3047-3057 被引量:1
  • 3I.A.Ben, A.Mitiche. A region merging prior for variational level set image segmentation[J]. IEEE Trans on Image Processing, 2008, 17(12): 2301-2311 被引量:1
  • 4M.Awad, K.Chehdi, A.Nasri. Multicomponent image segmentation using a genetic algorithm and artificial neural network[J]. IEEE Geoseience and Remote Sensing Letters, 2007, 4(4):571-575 被引量:1
  • 5王金甲,洪文学,李昕.一种K-均值脸谱图聚类新算法[J].仪器仪表学报,2007,28(10):1916-1920. 被引量:11
  • 6云廷进,郭永彩,高潮.K-均值聚类中心分析法实现红外人体目标分割[J].光电工程,2008,35(3):140-144. 被引量:20

二级参考文献16

  • 1XU R,DONALD W Ⅱ.Survey of clustering algorithms[J].IEEE Transactions on Neural network,2005,16(3):645-678. 被引量:1
  • 2HERMAN C.The use of faces to represent points in K-dimensional space graphically[J].Journal of the American Statistical Association,1973,68(342):361-368. 被引量:1
  • 3ASTEL K.Classification of drinking water samples using the Chernoff's faces visualization approach[J].Polish Journal of Environmental Studies,2006,15(5):691-697. 被引量:1
  • 4SU C P,GUPTA M,WHITE P.Multivariate sensory characteristics of low and ultra-low linoleic soybean oils displayed as faces[J].Journal of the American Oil Chemists' Society,2003,80(12):1231-1235. 被引量:1
  • 5SAXENA P C,NAVANEETHAM K.Comparison of Chernoff -type face and non-graphical methods for clustering multivariate observations[J].Computational Statistics & Data Analysis,1993,15(1):63-79. 被引量:1
  • 6HAIR J E,ANDERSON R E.Multivariate data analysis[M].Prentice Hall,1998. 被引量:1
  • 7http://www.ics.uci.edu/mlearn/MLRepository.html[EB/OL]. 被引量:1
  • 8DARINKA B V,ZDENKA C K.Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids[J].Chemometrics and Intelligent Laboratory Systems,2005,75(1):31-43. 被引量:1
  • 9Otsu N. A threshold selection method from gray-level histogram [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. 被引量:1
  • 10Yasuno M, Ryousuke S, Yasuda N, et al. Pedestrian detection and tracking in far infrared images[C]//Proceedings of IEEE Intelligent Transportation Systems. Vienna, Austria: IEEE, 2005: 182-187. 被引量:1

共引文献29

同被引文献18

  • 1陈宇,范影乐,庞全.复杂背景下的细胞图像分割技术研究[J].计算机工程与应用,2005,41(7):42-43. 被引量:4
  • 2梁再群 郭翼奋 朱颖初 等.根据统计分析冬孢子形态特性区分小麦矮腥黑穗病和网腥黑穗病的方法.植物保护学报,1982,:243-250. 被引量:2
  • 3薛志东,王燕,李利军.SVM图像分割方法的研究[J].微计算机信息,2007(24):306-308. 被引量:11
  • 4新农网.小麦腥黑穗病防治技巧[OL].新农网.(2010-04-10).http://www.zgny.tom.cn/ifm/tech/2010-4-10/101504.shtml. 被引量:1
  • 5Sasaki Y, Okamoto T. Automatic diagnosis of plant disease- recognition between healthy and diseased lea![J], Journal of Ja- panese Society of Agricultural Machinery, 1999, 61(2): 119-126. 被引量:1
  • 6Chesmore D, Bernard T, Inman A J, et al. Image analysis for the identification of the quarantine pest Tilletia ind/ca[J]. EPPO Bull- etin, 2003, 33(3): 495-499. 被引量:1
  • 7刘惜若.黑粉均与黑粉病[M].北京:农业出版社,1984. 被引量:1
  • 8Hu M K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962, 8(2): 179-187. 被引量:1
  • 9Haralick R M, Shanmugam K, Dinstein I. Texture features for image classification[J]. IEEE Transactions on Systems Manage- ment and Cybertics, 1973, 3(6): 610-621. 被引量:1
  • 10梁再群,郭翼奋,朱颖初,宋彦堤.根据统计分析冬孢子形态特性区分小麦矮腥黑穗病和网腥黑穗病的方法[J].植物保护学报.1982(04) 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部