期刊文献+

基于粗集理论的约简算法 被引量:7

Research of Reduced Algorithm Based on Rough Set Theory
下载PDF
导出
摘要 在基于属性重要性和基于分辨矩阵两种算法的基础上,提出了一种同时满足属性重要性和频度的启发式约简算法RedFreSigni。该算法的基本思想是:以属性的核为基础,把核和用户偏好集同时作为属性近似约简的一部分,以频度作为选择属性的启发信息可同时生成计算属性的频度信息与不可分辨矩阵,减少了计算时间。在此基础上进而提出了基于规则支持度和置信度的决策挖掘算法,该算法能有效提取出用户感兴趣的规则。 In this paper,we present a heuristic reduced algorithm,denoted RedFreSigni,that satisfies the attribute significance and attribute frequency at same time.This algorithm is based on the algorithms of attribute significance and resolution matrix.It takes the attribute′s core and user′s preference set as part of the attribute reduction,and using frequency as the heuristic information of attribute selection,and creating the frequency information of calculation attributes and undistinguishable matrix simultaneously,so the calculating time is reduced.Accordingly,a decision mining algorithm is presented which is based on rulesupport and confidence.Users can extract the useful rules effectively by using this algorithm.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第1期82-87,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(60275726) 吉林省自然科学基金资助项目(19990528)
关键词 约简算法 粗集理论 属性重要性 属性频度 分辨矩阵 数据挖掘 关联规则 知识表达 决策规则 rough set theory attribute reduction core attribute significance attribute frequency
  • 相关文献

参考文献9

  • 1Pawlak Z. Rough sets-theoretical aspects of reasoning about data[M]. Dordrecht: Kluwer Academic Publishers,1991:68~162. 被引量:1
  • 2Bjorvand A T.‘Rough Enough' -a system supporting the rough sets approach [K]. http://home.sn.no/~torvill.. 被引量:1
  • 3Bazan J G, Skowron A, Synak P. Dynamic reducts as a tool for extracting laws from decisions tables [M]. Ras Z W, Berlin: Springer-Verlag,1994:346~355. 被引量:1
  • 4Kriyszkiewicz M, Rybinski H. Finding reducts in composed information systems [A]. Ziarko W P (eds). Proceedings of RSKD'93 [C]. London: Springer-Verlag,1994:261~273.. 被引量:1
  • 5Starzyk J, Nelson D E, Sturtz K. Reduct generation in information system [J]. Bulletin of International Rough Set Society, (1999). 3(1/2):19~22. 被引量:1
  • 6Hu XiaoHua.Knowledge discovery in databases:an attribute-oriented rough set approach[D].Regina University,1995. 被引量:1
  • 7Ku Keyun, Diao Lili,Lu Yuchang,et al.Sampling for approximate reduct in very large datasets. PKAW 2000. 被引量:1
  • 8Merz C J,Murphy P. UCI repository of machine learning database[Z]. http:// www.cs.uci.edu/~mlearn/MLRepository.html.. 被引量:1
  • 9李雄飞,宋海玉,谢忠时,任岩,苑森淼.图像数据挖掘模型与方法[J].吉林大学学报(工学版),2002,32(1):90-92. 被引量:13

二级参考文献6

  • 1Mitsuru Kakimoto, Chie Morita, Hiroshi Tsukimoto.Data mining from functional brain images[Z]. Proc. of MDM/KDD 2000 Workshop on Multimedia Data Mining, Boston, MA USA, 2000. 被引量:1
  • 2Zhang Ji, Wynne Hsu, Lee M L. Image mining issues, frameworks, artd techniques[Z]. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining(KDD-2001 ), San Fransico, USA, 2001. 被引量:1
  • 3Han J, Kamber M. Data Mining concepts and techniques[M]. Academic Press, 2000. 被引量:1
  • 4Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[Z]. In Proc.of the ACM SIGMOD Conference on Management of Data, Washington D.C., May 1993:207-216. 被引量:1
  • 5曹加恒,舒风笛,张凯,彭敏,叶可.基于多媒体数据库的数据挖掘系统原型[J].武汉大学学报(自然科学版),2000,46(5):567-570. 被引量:21
  • 6李雄飞,苑森淼,董立岩,全勃.多段支持度数据挖掘算法研究[J].计算机学报,2001,24(6):661-665. 被引量:23

共引文献12

同被引文献43

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部