期刊文献+

结构健康监测-智能信息处理及应用 被引量:35

STRUCTURAL HEALTH MONITORING—INTELLIGENT INFORMATION PROCESSING AND APLLICATION
原文传递
导出
摘要 经济的发展和科技的进步使许多大型结构得以兴建。如何对这些大型结构的健康状况进行监测、日常管理以便在结构发生事故之前提前预警,以减少灾害的损失成为目前人们关心的问题。大型结构健康监测系统的开发为这个问题提供了一种有效的方法。然而,大型结构具有较多的结构冗余度和环境荷载的不确定性;此外,来自监测系统的海量数据也包含大量的噪声和不确定性。如何合理有效地处理来自健康监测系统海量不确定测量数据与信息,进而对结构的健康状况进行评价成为国内外同行关注的热点和难点。智能信息处理是近几年发展起来的新型信息处理技术,它是将不完全、不可靠、不精确、不一致和不确定的知识和信息逐步改变为完全、可靠、精确、一致和确定的知识和信息的过程和方法。它的出现和发展为以上难题提供了一条途径和技术保障。基于此,该文从结构健康监测涉及的以上主要问题入手,对智能信息处理技术从现代信号处理、神经网络、模糊理论、数据融合(信息融合)、分形理论、粗糙集、进化计算等方面对它们在结构健康监测与损伤诊断领域取得的研究成果进行了归纳总结,并对今后该领域需要进一步开展的工作进行了探讨和展望。研究发现,智能信息处理是结构健康监测与检测领域的有效技术和今后发展趋势。 A number of large-scale complex structures have been built promoted by the development of economy, science and technology. It is an interesting issue how to monitor and manage these large structures so that the alarm will be warned before various accidents occur, thus the disaster loss can be decreased to the minimum. Numerous large long-term structural health monitoring systems have been developed and installed in China. However, another problem arise gradually how to effectively deal with the huge and abundant measured information from a structural health monitoring system, thus to asses structural condition states. In view of this, intelligent information processing, which is a process of transforming the incomplete, imprecise, inconsistent and uncertain information into complete, precise, consistent and certain information, provides an approach and technique assurance to solve the above difficulties. This paper startes from the structural health monitoring and its primary issues, and then presentes a survey and overview of the intelligent information and its application in structural health monitoring and damage diagnosis, including modern signal processing, neural network, fuzzy theory, data/information fusion, fractal theory, rough set and evolutionary computation. Further research in the future are discussed finally. This study shows that intelligent information processing technique is one of the efficient processing tools and techniques in structural health monitoring and it also represents the effort direction in the future.
作者 姜绍飞
出处 《工程力学》 EI CSCD 北大核心 2009年第A02期184-212,共29页 Engineering Mechanics
基金 国家自然科学基金项目(50408033 50878057) 福建高校优秀人才计划项目(XSJRC2007-24) 教育部重点项目(208064) 福建教育厅重点项目(JA07002)
关键词 结构健康监测 智能信息处理 应用进展 损伤识别 识别精度 structural health monitoring intelligent information processing state-of-the-art damageidentification identification accuracy
  • 相关文献

参考文献175

  • 1Aktan A E. Issues in infrastructure health monitoring for management [J]. Journal of Engineering Mechanics, 2000, 4:711 -724. 被引量:1
  • 2Ko J M, Ni Y Q, Chan T H T. Dynamic monitoring of structural health in cable-supported bridges [C]//Liu S C. Smart Systems for Bridges, Structures, and Highways. SPIE, 1999, 3671:161 -172. 被引量:1
  • 3Ko J M, Ni Y Q. Technology developments in structural health monitoring of large-scale bridges [J]. Engineering Structures, 2005, 27: 1715-1725. 被引量:1
  • 4Ou J P, Li H. The art-in-the-art and practice of structural health monitoring for civil infrastructures in China [C]// Ou J P, Li H, Duan Z D, Structural Health Monitoring and Intelligent Infrastructure. London: Taylor 8L Francis, 2006: 69-88. 被引量:1
  • 5Ou J P, Li Hui. Structural health monitoring integrated systems and their implementation in infrastructures [C]// Li Hongnan, Yi Tinghua. Proceedings of Structural Disaster Prevention, Monitoring and Control. China Architecture & Building Press, Dalian, 2008: 42-68. 被引量:1
  • 6Wu Zhishen, Yang Caiqian, Li Suzhen. Structural identification theories and SHM design methodology based on dynamic and static distributed sensing techniques [C]//Li Hongnan, Yi Tinghua. Proceedings of Structural Disaster Prevention, Monitoring and Control. China Architecture & Building Press, Dalian, 2008: 200-252. 被引量:1
  • 7李宏男等著..结构健康监测[M].大连:大连理工大学出版社,2005:301.
  • 8袁慎芳编著..结构健康监控[M].北京:国防工业出版社,2007:318.
  • 9Park Seunghee, Inman Daniel J, Lee Jong-Jae, Yun Chung-Bang. Piezoelectric sensor-based health monitoring of railroad tracks using a two-step support vector machine classifier [J]. Journal of Infrastructure Systems, 2008, 14(1): 80-88. 被引量:1
  • 10Zhao Xuefeng, Gou Jihua, Song Gangbing, Ou Jinping. Strain monitoring in glass fiber reinforced composites embedded with carbon nanopaper sheet using Fiber Bragg Grating (FBG) sensors [J]. Composites Part B: Engineering, 2009, 40(2): 134- 140. 被引量:1

二级参考文献558

共引文献1002

同被引文献423

引证文献35

二级引证文献315

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部