期刊文献+

离散时间随机游动的遍历性 被引量:1

ERGODICITY FOR DISCRETE-TIME RANDOM WALKS
下载PDF
导出
摘要 首次给出了离散时间的随机游动满足几何遍历性的显式判别准则 ,并且证明此类过程不可能一致遍历 . The explicit formulas are presented for the first time for general discrete-time random walks to be geometrically ergodic. It is proven that these processes can never be uniformly ergodic.
作者 毛永华
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第6期729-733,共5页 Journal of Beijing Normal University(Natural Science)
基金 教育部博士点基金资项目 国家"九七三"计划资助项目 国家自然科学基金资助项目 (10 12 110 1) 国家杰出青年基金资助项目
关键词 离散时间 随机游动 遍历性 Karlin-Mcgregor表示 显式判别准则 马氏半群 random walk ergodicity Karlin-Mcgregor representation
  • 相关文献

参考文献9

  • 1[1]Karlin S, Taylor H M. A first course in stochastic processes. 2nd ed[M]. Boston: Academic Press, 1975 被引量:1
  • 2[2]Chen Mufa. From Markov chains to non-equilibrium particle systems[M]. Singapore: World Scientific, 1992 被引量:1
  • 3[3]van Doorn E A, Schrijner P. Geometric ergodicity and quasi-stationarity in discrtet-time birth-death processes[J]. J Austral Math Soc: Ser B, 1995,37:1 被引量:1
  • 4[4]Chen Mufa. Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains[J]. Stoch Proc Appl, 2000,87:281 被引量:1
  • 5[5]Reed M, Simon B. Methods of modern mathematical physics: vol Ⅱ[M]. New York: Academic Press, 1972 被引量:1
  • 6[6]Karlin S, Mcgregor J L. Random walks[J]. Illinois J Math, 1959,3:66 被引量:1
  • 7[7]van Doorn E A, Schrijner P. Random walk polynomials and random walk measures[J]. J Comput Appl Probab, 1992,49:289 被引量:1
  • 8[8]Yosida K. Functional analysis[M]. Berlin: Springer-Verlag,1980 被引量:1
  • 9[9]Chen Mufa. Explicit bounds of the first eigenvalue[J]. Science in China: Ser A, 2000,43:1051 被引量:1

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部