摘要
本文是文[7]的继续,研究了连续时间拟生灭过程,给出了一类连续时间拟生灭过程l-遍历和几何遍历行之有效的判别准则,并证明其不可能是多项式一致遍历和强遍历的.
As a continuation of [7], this paper studys continuous time quasi-birth-and-death processes. The explicit necessary and sufficient condition of l-ergodicity, geometric ergodicity for such quasi-birth-and-death processes are obtained and the authors prove that they are neither uniformly polynomial ergodicity nor strong ergodicity.
出处
《数学年刊(A辑)》
CSCD
北大核心
2005年第2期181-192,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10171009)高校博士点基金(No.20010533001)"985行动计划""211工程"中南大学博士创新基金(No.030602)资助的项目.
关键词
拟生灭过程
遍历性
马尔可夫链
矩阵几何解
Quasi-birth and death process. Ergodicity, Markov chain, Matrix geometric solutions