期刊文献+

基于贝叶斯网络的信息过滤模型研究 被引量:10

AN INFORMATION FILTERING MODEL BASED ON BAYESIAN NETWORKS
下载PDF
导出
摘要 传统信息过滤模型很难描述对信息过滤结果产生影响的各种因素 ,如质量、内容、用户偏好之间复杂的关系 ,也无合适的方法让用户将知识加入到信息过滤系统中 .因此 ,提出了基于贝叶斯网络的信息过滤模型 BMIF(Bayesian m odel of inform ation filtering) .BMIF是贝叶斯网络的简化 ,它描述了信息过滤的基本结构 ,提供了 6种节点用于描述影响信息过滤的事件之间的关系 .在此基础上 ,提供了 BMIF的各种使用方法 ,包括将传统方法使用BMIF描述 ,将词法知识用 BMIF表示 ,以及将自动学习与手动交互结合 。 Traditional models of content based information filtering are clumsy to describe the complex relationships of events that affect filtering process. Furthermore, it is difficult for users to interact with the filtering system. To address the above problems, BMIF-an information filtering model founded on Bayesian network is proposed in this paper. It firstly outlines the relationship of features, interests, queries and other main elements in information filtering with a simplified Bayesian network, and then provides six elementary nodes to characterize the relationships in specific conditions. Some use cases of BMIF are presented as well, which includes: ① Describing traditional models with BMIF; ② Adding lexical knowledge to BMIF; ③ Mixing learning with interaction, and combining content based filtering with collaborative filtering.
出处 《计算机研究与发展》 EI CSCD 北大核心 2002年第12期1564-1571,共8页 Journal of Computer Research and Development
基金 国家重点基础研究发展规划基金 (G19990 3 5 80 7) 国家自然科学重点基金 (6983 3 0 3 0 )资助
关键词 贝叶斯网络 信息过滤模型 信息处理 专家系统 information filtering, Bayesian network, collaborative filtering, content based filtering
  • 相关文献

参考文献17

  • 1[1]Nicholas J Belkin, W Bruce Croft. Information filtering and information retrieval: Two sides of the same coin? Communications of ACM, 1992, 35(12): 29~38 被引量:1
  • 2[2]Tak W Yan, Hector Garcia-Molina. SIFT-A tool for wide-area information dissemination. In: Proc of the 1995 USENIX Technical Conf. 1995. 177~186 被引量:1
  • 3[3]J Mostafa et al. A multilevel approach to intelligent information filtering: Model, system, and evaluation. ACM Trans on Information Systems, 1997, 15(4): 368~399 被引量:1
  • 4[4]Demet Aksoy et al. Research in data broadcast and dissemination. In: InfoComm '98. 1998 被引量:1
  • 5[5]David Heckman. A tutorial on learning with Bayesian networks. Tech Rep: MSR-TR-95-06,1995 被引量:1
  • 6[6]Gammerman. Probabilistic Reasoning and Bayesian Networks. Alfred Waller Limited Publisher, 1995 被引量:1
  • 7[7]Fabio Crestani, Mounia Lalmas et al. "Is this document relevant?… probably": A survey of probabilistic models in information retrieval. ACM Computing Surveys, 1998, 30(4): 529~551 被引量:1
  • 8[8]Howard Robert Turtle. Inference network for document retrieval[Ph D dissertation]. University of Massachusetts, Department of Computer and Information Science, 1991 被引量:1
  • 9[9]J Callan. Document filtering with inference networks. The ACM SIGIR Conf, Zurich, 1996 被引量:1
  • 10[10]Srini Narayanan, Daniel Jurafsky. Bayesian Models of Human Sentence Processing 被引量:1

同被引文献84

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部