摘要
为研究不同间隙串联用于高压直流开断的介质恢复特性,分析了基于真空与SF6气体串联间隙的新型高压直流断路器结构与工作原理,得到其分压措施和'电压零休'创造方式。然后分别从固有和实际两方面研究了直流开断时真空与SF6气体串联间隙的介质恢复特性,采用60 k V/8μs的高压脉冲源测试其固有介质恢复特性,系统研究了不同开距/不同电流下降率时真空间隙与SF6气体间隙固有介质恢复特性,并基于试验结果理论推导了新型高压直流断路器理想介质恢复强度;通过搭建新型高压直流断路器试验样机进行了开断测试,研究了有/无'电压零休'、有/无分压措施对实际介质恢复强度的影响。研究表明:真空与SF6气体间隙分别为5~7 mm和25~45 mm开距时介质恢复时间分别为20μs和200μs,最终的介质恢复强度(即介质的击穿电压)可达40 kV和60 kV,可推导得出'电压零休'时间为100μs时真空与SF6气体串联间隙理想介质恢复强度可达80 kV。实际直流开断验证了'电压零休'方式和分压措施可以实现真空与SF6气体串联间隙协同开断,为新型高压直流断路器研制提供了参考依据。
In order to verify the dielectric recovery characteristics of different series in HVDC circuit breaker(CB),the structure and principle of a novel HVDC CB with serial vacuum and SF6 gaps were introduced.The voltage distribution regulation and the way of'voltage-zero'were obtained.Then the inherent dielectric recovery strength and dynamic dielectric recovery strength(DDRS)of vacuum gap and SF6 gas gap in DC interruption were verified.Furthermore,the inherent DDRS was tested by high voltage pulse source of 60 kV/8μs.The inherent dielectric recovery characteristics of vacuum and SF6 gaps were tested with different gap and di/dt.Then the ideal DDRS of the novel HVDC CB was verified based on the test results.A prototype of the novel HVDC CB was set up and the interruption characteristics was tested.Additionally,the DDRS of the novel HVDC CB was researched in the presence or absence of'voltage-zero'and voltage distribution regulation.The results indicate that the inherent DDRS and the time of inherent DDRS of vacuum gap in 5~7 mm gap are 40 kV and 20μs,respectively,and those of SF6 gas gap in 25~45 mm gap are 60 kV and 200μs,respectively.And the ideal DDRS is 80 k V based on 100μs'voltage-zero'.The actual DC interruption indicates that'voltage-zero'and the voltage distribution can realize synergistic interruption of vacuum and SF6 gas gap.The research can provide a feasible reference for the novel HVDC CB.
作者
程显
杨培远
葛国伟
吴启亮
李泰煜
CHENG Xian;YANG Peiyuan;GE Guowei;WU Qiliang;LI Taiyu(School of Electrical Engineering,Zhengzhou University,Zhengzhou450001,China;Henan Engineering Research Center of Power Transmission&Distribution Equipment and Electrical Insulation,Zhengzhou450001,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2019年第8期2393-2402,共10页
High Voltage Engineering
基金
国家自然科学基金(51407163
51777025)
中国博士后科学基金(2017M622370)
河南省高校重点科研项目(16A470014
19A470008)
国家轨道交通电气化与自动化工程技术研究中心开放课题(NEEC-2017-B07)~~