期刊文献+

基于网格/无网格的三维超音速流场数值模拟

NUMERICAL SIMULATION FOR THREE-DIMENSIONAL SUPERSONIC FLOW FIELD BASED ON HYBRID GRID/MESHLESS ALGORITHM
原文传递
导出
摘要 该文针对绕三维复杂外形流动的数值模拟,提出了一套基于笛卡尔网格/无网格的混合算法。该算法采用计算效率高的笛卡尔网格覆盖全场,而在计算物体表面及周围邻近区域布置无网格离散点。通过对重叠区域的划分和信息传递,建立各计算区域之间的耦合关系,形成完整的计算系统。为验证混合算法数值模拟的适用性和准确性,该文对超音速圆球绕流进行了计算,将激波的位置、形状与理论分析结果进行了对比。并进一步采用该算法对Ma=2.5、0°~10°攻角下的B1AC2R标准导弹模型进行了计算,获得的气动力系数与实验值基本吻合,表明该文提出的方法可以进行实际工程应用。 To simulate three-dimensional flow around complex geometrics, a hybrid method based on Cartesian grid and meshless method is presented. In this hybrid method, the efficient Cartesian grid covers the whole computational domain, while a relatively small domain adjacent to the body surface is covered by meshless points. By implementing domain identification and information communication in the overlapping domain,several computational domains are coupled together, and the complicated computational system is formed. To validate the applicability and accuracy of this hybrid method, the supersonic sphere flow is calculated, and the location and the shape of the shock obtained are compared with the empirical formula data. The B1AC2 R generic missile at Ma=2.5 and angles of attack 0°~10° is also simulated, the computational results including the aerodynamic coefficients are in a good agreement with the experimental data. It is found that the hybrid method presented is available for actual engineering problems.
出处 《工程力学》 EI CSCD 北大核心 2014年第12期17-22,39,共7页 Engineering Mechanics
基金 国家自然科学基金项目(11072114)
关键词 复杂外形 超音速 笛卡尔网格 无网格法 耦合关系 complex geometrics supersonic cartesian grid meshless method coupled relationship
  • 相关文献

参考文献4

二级参考文献137

  • 1张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397. 被引量:84
  • 2贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166. 被引量:31
  • 3Cordes L W, Moran B. Treatment of material discontinuity in the element-free Galerkin method[J]. Comput Methods Appl Mech Engrg,1996,139:75-89. 被引量:1
  • 4Zhang X,Lu M W,Wegner J L. A 2-D meshless model for jointed rock structures[J]. Int J Numer Methods Engrg,2000,47(10):1649-1661. 被引量:1
  • 5Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method[J]. Comput Methods Appl Mech Engrg,1996,139:49-74. 被引量:1
  • 6Organ D, Fleming M, Terry T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency[J]. Comput Mech,1996,18:225-235. 被引量:1
  • 7Smolinski P, Palmer T. Procedures for multi-time step integration of element-free Galerkin methods for diffusion problems[J]. Comput Struct,2000,77:171-183. 被引量:1
  • 8Onate E, Idelsohn S, Zienkiewicz O C, et al. A finite point method in computational mechanics: Applications to convective transport and fluid flow[J]. Int J Numer Methods Engr,1996,39:3839-3866. 被引量:1
  • 9Onate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems[J]. Comput Mech, 1998,21:283-292. 被引量:1
  • 10Onate E, Idelsohn S, Zienkiewicz O C, et al. A stabilized finite point method for analysis of fluid mechanics problems[J]. Comput Methods Appl Mech Engrg,1996,139:315-346. 被引量:1

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部