摘要
研究山东省工业污染排放的变化趋势和影响因素对促进工业绿色发展和环境保护具有重要意义。文章基于山东省2012—2021年的工业废水、工业SO_(2)排放量以及工业固体废物产生量的数据,采用灰色马尔可夫模型及灰色关联法对山东省工业污染排放的变化趋势以及影响因素进行分析。结果表明:(1)山东省工业废水和工业SO_(2)的排放量在未来五年内仍呈下降趋势,但工业固体废物的产生量呈缓慢增长态势;(2)各影响因素对山东省工业污染排放均有显著影响,其中产业结构和能源强度是影响工业废水及工业SO_(2)排放的主要因素,经济发展水平对工业固体废物产生量影响最大。基于研究结果,文章提出大力发展新能源、加大技术投入、重点关注工业固体废物的处理等建议。
It is of great significance to study the changing trend and influencing factors of industrial pollution emission in Shandong Province for promoting industrial green development and environmental protection.Based on the data of industrial wastewater,industrial SO_(2) discharge and industrial solid waste generation in Shandong Province from 2012 to 2021,the changing trend and influencing factors of industrial pollution discharge in Shandong Province were analyzed by using grey Markov model and grey correlation method.The results show that:(1)The discharge of industrial wastewater and industrial SO_(2) in Shandong Province will decrease in the next five years,but the production of industrial solid waste will increase slowly;(2)All influencing factors have a significant impact on industrial pollution discharge in Shandong Province,in which industrial structure and energy intensity are the main factors affecting industrial wastewater and industrial SO_(2) discharge,while economic development level has the greatest impact on industrial solid waste generation.Based on the results of the study,the suggestions are put forward to develop new energy,increase technical input and pay more attention to the treatment of industrial solid waste.
作者
朱文晶
刘冠权
唐勇
ZHU Wen-jing;LIU Guan-quan;TANG Yong(School of Management Engineering,Qingdao University of Technology,Qingdao,Shandong,266525,China;Shandong University Research Center for Smart City Construction and Management,Qingdao,Shandong,266525,China)
出处
《新疆师范大学学报(自然科学版)》
2025年第1期18-25,共8页
Journal of Xinjiang Normal University(Natural Sciences Edition)
基金
山东省重点研发计划(软科学项目)一般项目(2019RKB01459)
青岛理工大学校级教改面上项目(W2022-057)。
关键词
工业污染
灰色关联分析
灰色马尔可夫模型
趋势预测
影响因素
Industrial pollution
Gray correlation analysis
Gray Markov model
Trend prediction
Influencing factors